ECAL Low Voltage System

EE WORKSHOP CERN 14 March 2002

Werner Lustermann, ETH-Zurich

CERN 14. March 2002

Introduction

Following an article on: **Power Supply Design and Distribution by Kim Fowler** (http://www.kepco.com/fowler.htm)

Important points in a power system:

- power source and condition
- needs and constraints of the system
- types of converters
- distribution method

Buy vs. build:

"This usually is not even a question – buy the power supply"

Needs and Constraints of the System

- Very low noise and ripple \rightarrow original specification:
- 3.0 mV RMS; 30 mV p-p (BW: 100 kHz 100 MHz)
- Protection of the VFE/FE electronics in case of a power system failure
- VFE/FE electronics are in a radiation environment
- magnetic field and radiation levels in the cavern
- Significant distance between the power source and the load (min. 27 m)
- Minimal power losses in the system
- Minimal costs
- European Standards and Regulations
- TIS regulations:
 - Electrical Safety Code C1
 - Voltage Domains according to IEC, IS33
 - Fire Prevention for Cables, Cable Trays and Conduits, IS48, IS23
 - Dangers due to Electricity, IS28
 - ...

Needs and Constraints of the System

|--|

Chip	+5 V ana	-2 V ana	+5 V dig	+2.5 V dig
FPPA	76.48	74.28	46.18	
ADC	109		10	
Fenix 1				120
Fenix 2				120
GOL				120
Control				140
25 channels	+5 V ana	-2 V ana	+5 V dig	+2.5 V dig
I/A	4.64	1.86	1.40	1.10
P/W	30.14	6.50	9.13	4.40

Udrop LVR	1.5	
total power	50.2	Watt
power / ch	2.0	Watt

Super Module	+5 V ana	-2 V ana	+5 V dig	+2.5 V dig	Sum
I/A	315.32	126.28	95.51	74.80	611.90
P / W	2049.55	441.97	620.79	299.20	3411.51

CERN 14. March 2002

W. Lustermann, ETH-Zurich

New idea of LV distribution

1) Low Voltage Regulators combined with a switch power units of 25 channels and hence a group of regulators can be supplied from a single source:

- This reduces the cost of the Power supplies
- This should reduce the cost of the cables as the number of wires required is reduced

Consequences:

- Need a radiation hard regulator with switching capabilities and integrated protection with a very high reliability
- Need large cross section cables inside the detector
- Need to control the regulators

2) Supply a high voltage to the detector and convert it on the magnet to a low voltage:

• This should reduce the cost of the cables significantly

LVR

- 1) Sharp regulators → not recommended in applications with very high reliability demands (see the data sheet)
- 2) RD49 regulators from ST microelectronics
 - Maximum current 3A → need 2 for +5 V analog in parallel (problem?)
 - Low dropout voltage 1.5 Volt at 3A → not really low → significant additional power loss close to the load
 - Remote sensing: no real 4 wire remote sensing → Regulators should be as close to the load, I.e. integrated into the detector, hence they are unaccessible for repair → reliability ???
 - Control? Voltage and Current measurements?
 - Negative regulator for -2V analog require an additional positive supply voltage to operate: This voltage should not disappear as long as the inhibit signal is active as this could damage the regulator (problem?)
 - Space and location in the detector? Additional print? On the FE board?
 - Cooling connection?
 - Connectors and Fan/Out
 - Filter Capacitors → OSCON

LVPS

What concerns the distribution inside the detector the choice of the LVPS and their location are not important it could be:

- A 400Hz/1kHz supply system with transformers + rectifiers as converters on the magnet?
- Linear or Switching mode supply in the counting house + cables?
- AC/DC or DC/DC converters at the magnet?

Questions:

• What do this supplies if the load changes significantly (50%) is the same power delivered to load or less (50%)?

• Do we need to regulate the output voltage of the converters at the magnet / input voltage to the regulators to keep them in the operation limits / to minimize the power loss inside the detector?

- How are the converters at the magnet controlled and maintained?
- What are the costs of different solutions including development, test, installation and maintenance

• ...