
Atlas Level-1
Calorimeter Trigger

Bruce M. Barnett

DAQ Status, UK

Status
and

Direction

November 4, 2000 Bruce M. Barnett 2

Overview

• Overview
• Goals
• Review of Components
• Buffer Manager
• Producer
• Analyser
• Database
• DAQ-1 Integration
• ROD Tests
• Future

November 4, 2000 Bruce M. Barnett 3

Goals

• Replacement DAQ
• The previous DAQ was based on last generation

methodology and tools. It had grown to the point of
being unmanageable and needed replacement.

• Integrated framework
• With a parallel need for diagnostics, the opportunity

exists to achieve an integrated approach to
diagnostics and daq for the level-1 calorimeter
project. This approach should achieve the most
efficient use of resources, and the smoothest
integration path. (inter level-1 and inter ATLAS DAQ).

• Extendable
• If the OO design is robust, the code developed for

short term tests should be adequate for long term use
and is expected to be extendable in that direction.

• Experience
• At worst, it will act as an invaluable prototype.

• Vehicle for Tests
• The code will provide the vehicle for tests, initially of

isolated modules and later of their connectivity,
(ROD,DSS, TTCVI) then of their interaction, finally
(CPM, CMM) in their slice test environment.

November 4, 2000 Bruce M. Barnett 4

Review of Components

November 4, 2000 Bruce M. Barnett 5

Buffer Manager

• PBM
– Functionality

• In a stand alone DAQ partition, one needs
somewhere to put the data in a way that allows
multiple process access at a subsequent stage. The
traditional Portable Buffer Manager satisfies this
need.

– Personality
• The PBM Needs an OO façade. This was prepared

before the last meeting in a preliminary form (for both
source and sink functionality). The paradigm is of an
event store which provides linear sequences of
memory to readout methods of hardware-classes.

– Progress.
• Not much has been done since July on this front.

Additional attention is still required to:
– event formatting at the producer end.
– event retrieval by the analyser

November 4, 2000 Bruce M. Barnett 6

Producer

• Event Format
– To bring us into conformance with some standard, it

was decided to wrap data in an ATLAS standard
format (DAQ-NOTE 50, ATL-DAQ-98-129)

– Wrapper code has been provided by H.P. Beck and
its suitability for direct use (and incorporation) is
awaiting study.

– Ideas on how to adapt to the DAQ event format
have been proposed. The ROD fragment is the
lowest level fragment that is defined. For data from
modules other than RODs, the idea is to define
pseudo-fragments that are in appearance ROD
fragments (as that is the lowest level that is defined
by the above document.)

• Class Definitions (HDMC Toolkit).
– A presentation at the software meeting outlined

extensions to HDMC to allow logical grouping of
module registers to permit the construction of high
level classes suitable for their functional (as
opposed to elemental) representation. Work for
CPM and ROD is progressing well.

November 4, 2000 Bruce M. Barnett 7

Analyser

• Functionality
– Grab the data from the PBM and decode it. This requires

several capabilities.

• Event Dump (low level)
– Scott T. (Birmingham) has developed (is

developing) an event dump which expects a pointer
to an (ATLAS) event and analyses the structure
thereby recognising isolated event fragments of
various types.

• Event Analysis
– How does the data inter-correlate. No progress.

• Display: l1histos.
– l1histos

• This ROOT package from Tara S. takes groups of
histograms defined in the old-daq-database and
creates equivalent ROOT histograms. The package
is stable (awaiting correction of an identified bug).

– Histogram Database
• To aid in the parsing of the old database, thereby

gaining independence from much old code, new
classes to parse the old database were added.
(Horse/Cart problem).

November 4, 2000 Bruce M. Barnett 8

Database

• HDMC files:
– Allow representation of module register content as

well as system architecture (what modules, where)
and bit definitions.

– HDMC needs to define a database interface
conformant to DAQ-1 (IS) which interacts
appropriately with this file based mechanism.

• DAQ (Producer)
– is able to use HDMC parts files to create modules

and associated classes in lists appropriate to the
run state model of DAQ-1. If the HDMC interface is
extended to access a DAQ-1 database, the move to
its use from within the producer (or analyser, in
fact) should be effortless.

• Python and IS
– Murrough L. has written a Python interface to a

primordial IS based database. This may be a first
step of the HDMC integration mentioned above.

November 4, 2000 Bruce M. Barnett 9

DAQ-1 Integration

• Prozaq
– Which has been described earlier is a basic

framework which uses the DAQ-1 GUI and state
model and constructs “controllers” appropriate to a
level-1 partition. Progress in incorporation of
Analyser or Producer code into this framework has
been. Not.

• DAQ-1
– meanwhile has matured from version 008 to 010,

the latter containing event-monitoring support and
some enhancements in the handling of run
controller states which are performance enhancing.

• Next Steps.
– Integrate Producer into prozaq DAQ-1 run controller
– Upgrade to 010

November 4, 2000 Bruce M. Barnett 10

ROD Tests

• Test Vectors
– Tests of each system require input and output

vectors which emulate missing hardware or
complement the available natural phase space.

– In the case of the CPM and ROD, Bill S.
(Birmingham) has specified a method of generating
files containing such vectors, so that the DSS
module may be loaded with CPM-like output data
and the DSS input may be compared with
expectation:

• http://www.ep.ph.bham.ac.uk/user/stokes:

November 4, 2000 Bruce M. Barnett 11

Future

• Complete basic DAQ work, DAQ-1 interaction
• For Each Module {

– design HDMC basic part file, configuration file.
– define HDMC module content parts file (I have n

modules of type newModule, with addresses
0x00xxx... respectively).

– define register associations (Together and HDMC
“register inheritances” from the basic part file)

– generate code functional classes, adhering to daq
state-model API (load, configure, run, unload, de-
configure)

– build classes into system
}

• Define test vectors appropriate to each module,
spanning the set of basic, connected and
interactive functionality.

• Define test vectors for each sub system …
• Define test vectors for each system ...

