
1

Paul Bright-Thomas
Alan Watson

11th May 2000

OO Experiences in BaBar

� BaBar overview and status

� BaBar environment

� BaBar code

� Personal experiences

Paul Bright-Thomas OO experiences in BaBar 11th May 2000

2

BaBar overview

� BaBar is high-lumi \B factory" running at �(4s)

� Asymmetric beam energies of 9GeV+ 3:1GeV) boosted
B's, time-dependent CP measurements

� Detector: 5-layer SVT, Drift chamber, DIRC, CsI EMC,
IFR

� Design luminosity of 3:1033 cm�2 s�1, integrating to
30 fb�1 per year or 30 Million B events

� Online event processing (OEP)) Level-3 trigger
)Prompt Reco (OPR)

� Max 200 kHz Level-3 trigger input, 100 Hz reconstructed,
5 Mbyte/s to storage

� � 600 collaborators, minority active in physics

BaBar Status
� BaBar up and running since May 1999 | 1 year's
data-taking!!!

� Good accelerator start-up)> 2=3 design lumi,
100 + pb�1 per day

� DAQ and reconstruction now keeping up, Minor miracle!

� Environment and tools put in place early

� Code itself rather turbulent until end 99, development now
smoother

� BaBar Objectivity database is already > 130Tbyte in size

� First results at Osaka from � 10 fb�1 of data | CP result
on sin 2� from B! J= K0

s
agship channel expected

Paul Bright-Thomas OO experiences in BaBar 11th May 2000

3

BaBar environment

� 4 platforms: Solaris, AIX, OSF and Linux (HP
deprecated)

� Availability of commercial tools limits cross-platform
compatibility

� All BaBar SW (incl WWW) under AFS | signi�cant
reliability problems

� Version management through CVS and Software Release
Tools (SRT)

� Build and test managed with GNUmake

� User environment standardised through HEPiX

� Job con�guration through Tcl scripting; Perl also widely
used for integration

� Central storage in Objectivity OO database | separate
federations by function, throughput problems improved

� Alternative data access via Kanga | KangaROO(T) uses
ROOT as storage, growing in popularity due to portability

� Good use of WWW: 30k pages, wrapped for uniformity,
with navigation bars

� HyperNews for subscriber announcements and threaded
discussions | � 200 forums

� LiGHT has been used to document some releases, but not
maintained

� Remedy for problem reporting and tracking

� Several tools for SW quality: Purify, GreatCircle,
CodeWizard

Paul Bright-Thomas OO experiences in BaBar 11th May 2000

4

BaBar code

� Structure:
{ Code organised as 500 packages, each with responsible
co-ordinator

{ Most BaBar code is C++, with Java GUI applications,
e.g. Java Analysis Studio (JAS)

{ Few FORTRAN packages C++-wrapped, e.g. Hbook,
Minuit

{ Many packages build on CLHEP base classes, deriving
for speci�c usages

{ Several vendor libraries: RogueWave, CORBA, STL
{ High inter-dependence between packages inevitable

� Management:
{ Nightly builds of approved package versions tags
{ Coherent set of for each package issued as release
(2-weekly)

{ Online and reconstruction releases are made separately
{ Environment turbulent when packages in development
{ Pace of development has slowed and inclusion of new
tags more strictly controlled) better code stability

� Documentation: poor!
{ A partially complete, but thorough, tutorial Workbook
exists, which is useful for new user

{ Speci�c \user" packages are well-documented, such as
Beta analysis framework

{ Many packages inadequate documentation, even within
code

� Design and quality:
{ Little evidence of formal design or automated code
generation | growth seems to be \organic"

{ Code quality: biggest problem memory management

Paul Bright-Thomas OO experiences in BaBar 11th May 2000

5

Personal experiences of OO

� C++ syntax intrinsically evil, but will have to do (for now)

� Key advantages of OO are supposedly:
{ Good design
{ Maintainability
{ EÆciency through re-use

� Reality for BaBar:
{ Good design | in places, methodology not obvious
{ Maintainability | coupling through interface volatility
{ Re-use | yes, but initial use problematic without
documentation

� Good base classes with well-de�ned interfaces can make
code very modular

� However, most classes dependent on something and life
is hard when interfaces badly documented or designed

� Learn the tricks | Abstraction, inheritance, patterns

� Mundane tasks tackled by class libraries | lists,
iterators, matrices, vectors, strings | see CLHEP

� Classic \Design patterns" helpful | managers,
environments, proxies, wrappers, factories, helpers,
composites | see Gamma, Helm, Johnson and Vlissides

� Discipline required for memory management | e.g. pass
by reference for longevity, pass by pointer for deletion

� Recommendation:
{ 30% design
{ 10% coding
{ 20% testing
{ 40% documentation
� Jump in ASAP | learn while there's less of it in ATLAS!!!

Paul Bright-Thomas OO experiences in BaBar 11th May 2000

