PPr MCM PDR — Summary

	1-day review on Monday 24 th January
	Reviewers: Christian Bohm Paul Bright-Thomas Viraj Perera Uli Schaefer
	E-mail comments from reviewers to Ullrich in advance
	Ullrich presented summary of the specifications and addressed major points from the reviewers
	List of recommendations discussed with Ullrich at the end of the review
Summary:	
_	

- 1. <u>Analogue input network</u> must not use input resistance of FADC chip to control attenuation uncertain by >10%
 - → redefine circuit to give precision <1%
- 2. <u>PHOS4 timing chip</u> momentary interruption of clock corrupts stored timing data, resettable only by power-down/up
 - → investigate failure modes urgently and explore possible monitoring procedures

- 3. <u>Effect of clock jitter on LVDS Tx</u> TTC specifications show maximum jitter > LVDS Tx requirements, possibly increasing link BERs
 - → repeat LVDS link tests using TTC system
 - → investigate possible use of new faster NS LVDS serialiser-deserialiser chipset
 - → consider use of "repeater" PLL with long timeconstant on PPM to feed LVDS Tx chips on MCM

4. MCM manufacture

→ include more detail in the specifications about the precise sequence of manufacturing steps

5. FADC chip

- → justify in the specifications the choice of FADC device
- 6. <u>Use of G-links</u> if LVDS were to run into serious problems, our only fall-back link possibility is G-link, but this would have major consequences
 - → outline in the specifications what the implications would be for the MCM design

7. LVDS Tx operation

- → specify 100 ohm MCM trace impedance for differential LVDS bitstream signals
- → specify clearly the power supply decoupling to be provided for the Tx dies

8. Pre-compensation and fan-out

→ chosen technique for LVDS fan-out and cable pre-compensation must be thoroughly tested before final MCM design is frozen

9. Schedule issues

→ specifications must include details of how the MCM design-manufacture-test schedule meshes with the similar schedules for the PPr ASIC and PPM