

ASSO - Level-1 Calorimeter Trigger *Cluster and Jet/Energy Processors*

- Overview
- Deliverables
- Programme organisation
- Infrastructure
- Interfaces Input
- Interfaces Output
- Schedule Milestones
- Quality Assurance
- Recent results

ASSO - Level-1 Calorimeter Trigger Overview

ASSO - Level-1 Calorimeter Trigger Deliverables - (1)

- Cluster Processor:
 - **▶** searches for signatures of high-p_T e/g and t/hadrons
 - ∧ Calculates total multiplicity of e/g and t/hadron "objects"
 - ▶ provides Region of Interest (Rol) information to Level-2 Trigger
 - ▶ monitors incoming and outgoing data from Level-1 ACCEPTs (to DAQ)
- Jet/Energy Processor:
 - **\mathbf{k}** searches for signatures of high- $\mathbf{E}_{\mathbf{T}}$ jets
 - ∧ Calculates total multiplicity of jets and forward jets
 - $rac{1}{5}$ calculates missing E_{T} , total scalar E_{T} and total jet E_{T}
 - ▶ provides Region of Interest (Rol) information to Level-2 Trigger
 - ▶ monitors incoming and outgoing data from Level-1 ACCEPTs (to DAQ)

ASSO - Level-1 Calorimeter Trigger Deliverables - (2)

• Hardware:

- ∧ Cluster Processing Module (CPM) ~65 modules
- K Jet/Energy Module (JEM) ~40 modules
- Common Merger Module (CMM) ~15 modules
- ⊼ Timing Control Module (TCM) ~60 modules
- ▶ Processor Backplane (PB) ~10 modules
- K Serial Link cable system ~2000 cables
- ► 9U VME crates (commercial) ~10 crates
- K VME Processor (commercial) ~10 modules
- Software:
 - **► ???**

ASSO - Level-1 Calorimeter Trigger *Programme Organisation*

- Cluster Processor UK
 - 尽 CPM (hardware) Birmingham University
 - ∧ Algorithms/Software Birmingham University, QM London, RAL
- Jet/Energy Processor Germany and Sweden
 - 尽 JEM (hardware) University of Mainz
 - ∧ Algorithms/Software (Jet triggers) University of Stockholm
 - K Algorithms/Software (Energy triggers) University of Mainz
- "Common" items

 - **► TCM RAL**
 - ROD RAL
 - ▶ PB University of Stockholm

• Cluster Processor & "Common" Modules:

Schem capture/layout (in-house):	CADENCE v13.5 (moving to v14.0 <2002)
► Firmware (in-house):	FPGA ADVANTAGE v5.1 (HDS, Leonardo Spectrum, ModelSim)
	Xilinx ISE v4.1
	Altera MAX+PLUS II
K Manufacturing (out-sourced):	Commercial
► Testing (in-house):	Module stand-alone
	JTAG
	Xilinx ChipScope
► Integration (Heidelberg + CERN):	Full Level-1 "Slice" tests

Atlas Level-1 Calorimeter Trigger Infrastructure (2)

- Jet-Energy Processor:
 - Schem. capture/layout (in-house): CADENCE v???
 - **▶** Firmware *(in-house)*:
 - ► Manufacturing *(out-sourced)*:
 - **►** Testing *(in-house)*:
 - ► Integration (Heidelberg + CERN):

FPGA ADVANTAGE v??? Xilinx ???

Commercial

Module stand-alone ® JEP sub-system

Full Level-1 "Slice" tests ® ATLAS

Backplane:

- **Schem.** capture/layout *(in-house)*: Mentor Graphics design suite
- ► Manufacturing (out-sourced):
- **►** Testing *(in-house)*:

Commercial (APW)

Board stand-alone ® CP/JEP sub-systems

Atlas Level-1 Calorimeter Trigger Interfaces - Input

- Real-time data path:
 - ► ~2000 cables carrying serial LVDS data at 480 Mbaud/channel from PPr system

 - ► Contact: P Hanke (KIP, University of Heidelberg)
- TTC timing/control path:
 - ► ~7 optical fibres from TTC system into TCMs (1 TCM per crate)
 - **►** *Ref:* TTC System ???
 - **►** Contact: ???

Atlas Level-1 Calorimeter Trigger Interfaces - Output

- Real-time data path:
 - ► Multiplicities of e/g and t/hadron clusters and jets, and missing/total energy sums to CTP ...

 - ► Contact: R Spiwoks ???
- Rol data to Level-2:
 - - ► Contact: (to be added)
- "Slice" data to DAQ:
 - ∧ The second s
 - K Ref: (to be added)
 - ► Contact: (to be added)

Atlas Level-1 Calorimeter Trigger Interfaces - Miscellaneous

• Detector Control System:

- ∧ CAN-bus ... (to be expanded)

 - **▷** Contact: U Schaefer ???
- Online Control System:
 - ► VME Interfacing ... (to be expanded)
 - K Ref: (to be added)
 - ► Contact: (to be added)

Atlas Level-1 Calorimeter Trigger Schedule - Milestones

PBS no	Milestone	Date
10.1.2.1	Start CP/JEP sub-system tests	Jan 2002
10.1.2.1	Start "Slice" tests	April 2002
10.1.2.1	Completion of "Slice" tests (f1)	July 2002
10.1.2.1.4.8	FDR for TCM	Oct 2002
10.1.2.1.4.8	PRR for TCM	Nov 2002
10.1.2.1.4.9	PDR for ROD (CP/JEP)	Oct 2002
10.1.2.1.4.3	FDR for Processor Backplane (PB)	Oct 2002
10.1.2.1.2.1	FDR for CPM	Nov 2002
10.1.2.1.4.3	PRR for Processor Backplane (PB)	Nov 2002
10.1.2.1.2.1	PRR for CPM	Dec 2002
10.1.2.1.3.1	FDR for JEM	Dec 2002
10.1.2.1.3.1	PRR for JEM	Jan 2003
10.1.2.1.4.1	FDR for CMM	Jan 2003
10.1.2.1.4.1	PRR for CMM	Feb 2003
10.1.2.1	Completion of "Slice" tests (f2)	April 2003
10.1.2.1.4.9	FDR for ROD (CP/JEP)	Jun 2003
10.1.2.1.4.9	PRR for ROD (CP/JEP)	Jul 2003
10.1.2.1.2	Full CP sub-system available for System tests	Dec 2003
10.1.2.1.3	Full JEP sub-system available for System tests	Jan 2004
10.1.2.1.2	Completion of CP sub-system tests	Dec 2004
10.1.2.1.3	Completion of JEP sub-system tests	Jan 2005
10.1.2.1	Calorimeter trigger available in situ	May 2005

Internal peer review system:

- ▶ Preliminary Design Review (PDR) for every major component/module
 - **▶** panels include specialists in electronics, system engineering, DAQ and software
- ► Final Design Review (FDR) after full evaluation in "Slice" Test system

▶ panels include representative from Technical Co-ordination

N Production Readiness Review (PRR) to approve full manufacture

► TC representative from FDR informs and advises (~1 month > FDR)

- In addition, all electronics with UK responsibility will conform to ISO9000 requirements - *e.g.*
 - **▶** Route Cards and Problem Reports for all modules
 - **►** Etc, etc, etc ...

- LVDS tests (Birmingham/Mainz):
- Trigger uses ~7000 high-bandwidth serial links (e.g. >4 Gbyte/s @ CPM)
- Bit-error rate (BER) requirements <10⁻¹⁰ per link (to minimise false triggers)
- NS Bus LVDS (de)serialiser chipset DS92LV1021/121
- Studied cable types, lengths (<20m), pre-compensation techniques
- BER <10⁻¹³ per link achieved for cable lengths up to 20m (L-R equalisation)
- N.B. Important requirements (achievable):

▶ good board layout, clean power supplies, low clock jitter, ...

Atlas Level-1 Calorimeter Trigger Recent Results (2)

- ROD tests (CERN):
- TTC used to trigger system
- Rols sent on G-link to ROD
- Fragments sent in parallel to RoIB/ROS
- Fragments fully-checked on receipt
- Firmware errors in S-Link interfaces (now understood)
- ROD latency within specifications

- What are the potential show-stoppers?
- Processor Backplane is a component crucial to the CP and JEP subsystems - any performance limitations could produce serious delays in sub-system testing ("Slice" tests)
- Widespread use of Fine-Pitch BGAs *on large (9U) boards* is untested technology (for us) both board assembly and re-work may prove difficult (expensive, time-consuming, unreliable?, ...)
- Other concerns?
- Software effort is especially stretched factor 2 too small?
- Good quality electronics effort is hard to retain OK at present, but ...