

LHC Clock Phase Stability: is it an issue?

- It seems that the LHC clock phase might drift relative to the beam crossing
- What can we tolerate, and will this be achievable?

Geneva, we have a problem...

Doesn't the TTC solve this for us?

 Not if it is the LHC clock itself which drifts relative to the beam phase.

Possible effects:

- Reduced FIR BCID efficiency
- Failure of saturated pulse BCID
- Degraded E_T resolution

Tolerances

From studies by PBT & Ullrich Pfeiffer:

- FIR BCID can tolerate ±5ns
 - -BCID efficiency more sensitive than E_T resolution
- Leading-edge saturated pulse BCID fails at ±5ns
 - Probably strongest limit
- Both tested with em-like pulses
 - -may be worse with hadronic?

Other sources of variation

We anticipated several sources:

- cable length variations
 - -PPr can re-align phases
- time of flight variation
 - -some p_T dependence cannot be corrected
- cell-to-cell timing differences within towers
 - cannot correct for these
 - -specified to be <±2.5ns

Drift vs Jitter?

What we can tolerate depends on period:

- "Jitter" (bc to bc variation):
 - effect depends of fraction of pulses outside tolerance (i.e. length of tails)
- Short-term drift (minutes to hours):
 - most dangerous: coherent effect on all events
- Long-term drift (days to months)
 - can recalibrate for this

So, what can we tolerate?

Assume other sources < 3 ns

• Jitter < $\pm 2ns$ absolute (e.g. σ < 350 ps)

or

drift < ±2ns on period less than recalibration
 or

appropriate mixture of the two
 Limits depend on tolerable error rate

assume rather low for saturated pulses

Effect on sLHC?

It's worse at 10³⁵ cm⁻²s⁻¹

- assumption is 12.5ns beam crossing interval
- will want to run 80 MHz BCID
- tolerance on phase variation will be reduced
 approximately halved
- LHC clock drift tolerance may be very low indeed

So, where do we stand?

Nick is collecting requirements:

I've given him the figures from slide 6

What can the machine do?

- No idea anyone else?
- Are others more sensitive?

See above

Could we monitor phase?

Question from Nick:

- Can we monitor clock phase by analysing time frame data?
 - -given enough data, I think so
 - -best to use higher- E_T (non-saturated) pulses
 - -monitoring jitter trickier

Conclusions

Not much tolerance left:

Calorimeter readout uses up much of it

Don't know what LHC can provide:

- Best we can do is set an adequately tough requirement
- We may be able to monitor drift:
 - Needs some thought, but seems feasible in principle