Thoughts on hardware simulation and test-vectors

- Motivation
- First attempts
 - Successes
 - Problems
- Current simulation
 - Architecture
 - Status
 - Plans

Motivation for simulation

• Online Monitoring

- Read data from same event in several places
- Simulate system response for input data
- Check for differences
- Test Vector Generation
 - Complex system many components
 - Difficult to maintain ad-hoc test vectors for each part of system, and know the exact response everywhere
 - Need to rationalise generation and vector storage

First attempts

- Simple set of C++ classes used to generate test vectors for CP FPGA
 - Added BC-Mux simulation to already existing data
 - Concentrated on data i/o
 - Used simple pre-defined file formats for a single chip
- Successes
 - Detected mismatch in CP Chip Specifications
 - Data i/o class was genuinely re-usable!
- Problems
 - No easy way to scale to larger system
 - Algorithms did not fit well into architecture

Current Simulation Architecture

- Similar to a very much simplified VHDL
 - Basically two types of object
 - DataPort cf VHDL ports interface between processes
 - ProcessElement cf VHDL entities processes, algorithms
 - Hierarchy of elements possible
 - No detailed timing simulation (one step = one tick)
- File i/o now provided by specialised processes
- Currently configured by one procedure creates modules and their connections

Example – CP Algorithm

- Input
 - ChipData contains 5x7
 EM+Hadronic cells
- Output
 - Left Hits
 - Right Hits
 - Left Rol
 - Right Rol
- Internals
 - CP algorithm

Example – CP Chip

- Can build individual blocks into a container object
- Complexity hidden in CPChip class internals
- Externally, appears exactly the same as a non-composite process

Status

- Have built an (almost) complete CPM
- Connected a few CPMs into backplane
- Tested with original test vectors, duplicated in eta/phi space
 - Difficult to be sure results are right
 - Little testing done on error conditions
- Working on integrating Bill's test vector generation techniques

Plans

- Write ROD simulation, test against Bill's work
- Write more complex test vector generators for detailed study of components
- Work on input/output data formats
- Re-write using ATLAS standards + offline code
- Many other questions to answer:
 - Think about need for further structure?
 - Integrate configuration database?
 - Integrate into online software?