CPM Readout Controller Design

ROC functionalities: DATA path to ROD

- On LVL1A receipt, Enable Readout (EN): output data contained in DP memory at address ADDW+ offset in FIFO
- If FifoEmpty (FE) not empty starts LoadShift
- Enable shift register of data from the serialiser ...
- ...then Hit results, Bunch Crossing Number and parity bit

parity0	HIT0 bit2	•••••	HIT0 bit0	SRL0 bit79		SRL0 bit1	SRL0 bit0
parity1	HIT1 bit2		HIT1 bit1	SRL1 bit79		SRL1 bit1	SRL1 bit0
					_		
parity19	BCN3 bit2	•••••	BCN3 bit0	SRL19 bit79	9	SRL19 bit1	SRL19 bit0

ROC functionalities

ROC: VHDL design

- ■Thanks to Ian and Richard, several blocks were available:
 - Pipeline (same as serialiser chip)
 - •Fifo
 - Counter
 - Multiplexing
 - VME controller
- Functional tests are OK
- Implementation in Xilinx Virtex XCV100-6-pq240: 98 % bonded IOBs: more pins could be saved
- Simulation with timing: does not work: suspect timing problem between Fifo output and shift register

Next Step

- Find timing problems
- Testing VME control
- Design the Rol ROC: 16 pins output of 21 bits each