

ATLAS Level-1 Calorimeter Trigger Meeting, Birmingham University, 7-9 November 2002

Jet/Energy Module

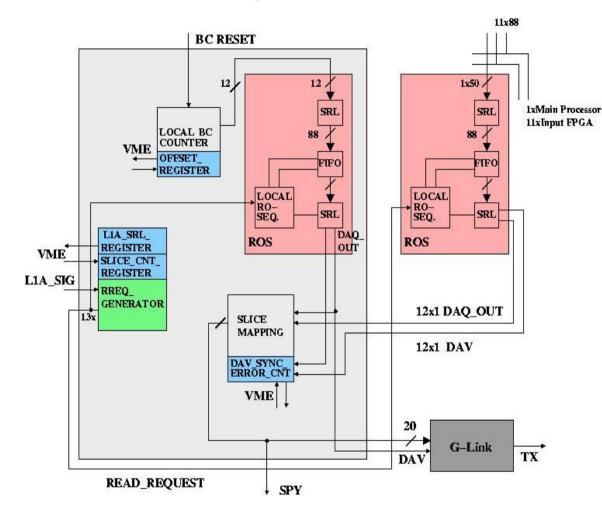
- Firmware status -

What has happened since Stockholm ...

Overview:

- Continued tests of the RTDP which included
 - \Box E_X and E_Y tree (see Jürgen's talk)
 - □ Playback and Spy etc.
 - TTC interface communication between Control_FPGA and all of the other processor FPGAs
 - □ Code clean-up
 - Control_FPGA (Spartan II XC2S200-6-FG456)
 - Number of SLICEs
 106 out of 2352 4%
 - Maximum frequency: 78.858MHz
 - Input_FPGA (Spartan II XC2S200-6-FG456)
 - Number of BLOCKRAMs 13 out of 14 92%
 - Number of SLICEs
 1006 out of 2352 42%
 - Maximum frequency: 42.450MHz
 - MainProcessor (Virtex E XCV600E-7-FG680C) NO JET! -
 - Number of SLICEs
 1677 out of 6912 19%
 - Number of BLOCKRAMs 40 out of 72 55%
 - Maximum frequency: 41.642MHz
 - Readout_Controller (Spartan II XC2S200-6-FG456)
 - Number of SLICEs
 246 out of 2352 10%
 - Maximum frequency: 69.560MHz

Simulation of the complete RTDP


The used testbench for this simulation includes all RTDP components from the Input FPGA and MainProcessor implementation except for the input synchronisation

 \Rightarrow this means:

odd parity check – outmask – presummation for elm/had channels – comparison with a low threshold – multiplexing – demultiplexing – calculation of E_t , E_x and E_y – saturation

One example:		SIM_SUM_3.txt 1 0 0 0
• All 8 Input FPGAs were filled with a random pattern (maximum value 64) which was based on adder tree for Fast Trigger Simulation.		2000 3000 4000 5000 6000
Conclusion:	JEMResult_3.txt 1 209 19 211 2 178 17 180 3 273 26 276	7 0 0 0 8 209 19 211 9 178 17 180 10 273 26 276
 Agreements of both results (software and hardware simulation) 	4 313 30 316 5 199 18 201 6 184 17 186 7 231 22 233	11 313 30 316 12 199 18 201 13 184 17 186 14 231 22 233
 Estimation for current latency : about 7 clock cycles + 2,5 clock cycles due to the input synchronisation 	8 237 22 239 9 304 29 307 10 183 17 185 11 211 20 213 12 268 26 271	15 237 22 239 16 304 29 307 17 183 17 185 18 211 20 213 19 268 26 271

Implementation of readout controller

• RoC controls and reads out local RoS which located in the processor FPGAs

- An additional RoS that is implemented in the RoC captures the bunch crossing number, which is generated by a local counter
- VME registers set delay of the readrequest signal, the count of slices and offset for the BC counter
- RoC maps all of the incoming single data bit streams in an according format
- Spy memory is implemented for debugging purposes
- •NOTE: Readout of Jet Rols is realized in a similar manner

ROC implementation is simulated and tested (on board via spy) successfully!

Integration of Jet Algorithm in the framework of the Energy Code

The current version of the code includes the interface for the jet algorithm and the additional implementation of :

- All registers (threshold + size) according to the documentation
- Spy functionality for the jet multiplicities
- DAQ path for the ROI readout (previous formats)

Preliminary estimation of the required resources after place and route:

Current target: Virtex XCV600E-7-FG680C Device utilization summary:

Number of External GCLKIOBs	1 out of 4	25%	
Number of External IOBs	463 out of 512	90%	
Number of LOCed External IOBs	0 out of 463	0%	
Number of BLOCKRAMs	48 out of 72	66%	
Number of SLICEs	6910 out of 6912 99%		
Number of DLLs	1 out of 8	12%	
Number of GCLKs	2 out of 4	50%	

Design statistics:

Minimum period: 35.216ns (Maximum frequency: 28.396MHz) Maximum net delay: 14.704ns

♦

The device doesn't match the requirements!

JEM 0.2: Virtex XCV1600E-6-FG680C Device utilization summary:

Number of External GCLKIOBs	1 out of 4	25%
Number of External IOBs	463 out of 512	90%
Number of LOCed External IOBs	0 out of 463	0%
Number of BLOCKRAMs	48 out of 144	33%
Number of SLICEs	7506 out of 15552	48%
Number of DLLs	1 out of 8	12%
Number of GCLKs	2 out of 4	50%

Design statistics:

Minimum period: 31.029ns (Maximum frequency: 32.228MHz) Maximum net delay: 13.791ns

One critical point may be the maximum frequency! (see Attila's talk)

Outlook

Jem0.0 - Jem0.2:

• Simulation of the input side of TTC_handling (Control_FPGA)

(=> TTC_Interface between Control-FPGA and all the other FPGAs is already tested via VME and operates successfully)

• Expansion of the present RTDP testbench to integrate the jet algorithm

Common Merger Module (CMM):

• My main task will be to write and simulate firmware for the RTDP of the Energy Common Merger Module!