JEM Plans

- Status (summary)
- Further standalone tests
- Sub-slice test programme
- JEM re-design
- Slice test

Status (summary)

- 2 JEMs up and running:
 - JEMO.0 used for standalone tests only
 - JEMO.1 fully qualified module0
- 1 JEM under production: JEM0.2 (=JEM0.1 with larger main processor (XCV1600E)
- Hardware fully tested, apart from CAN and flash configurator. Systematic tests of FIO links soon.
- Firmware fully tested apart from final input synchronisation, final jet code and ROI
- Work on merger RTDP starting now
- Control software available. Final software (module services and HDMC) under way
- JEMO documentation has been updated V.8g

Further standalone tests

A few further tests are required before moving to RAL:

- Final input synchronisation
- FIO link tests with adjustable TTC clock
- final level2 interface (ROI)

JEM0.1/0.2 Sub-slice test at RAL

Ready for tests at RAL this month Hardware required:

- powered crate w. backplane and TCM etc.
- 1-2 JEMOs w. TTC daughters
- LVDS signal sources
- Access to TTC-system for non-exclusive use
- Merger, ROD
 (+6U-crate, CPU, 1 DSS, on-line software ... shipped from Mainz)
- Large numbers of input channels (DSSs)
- Timing with (real) TTC
- Inter-JEM communication on Processor Backplane
- Merger communication (energy merger w. simplified RTDP?)
- Slice data into RODs (?? or any other sink?)

Towards the production modules:

Why a new JEM design? (what's wrong with the old one)

- Current JEM is 1.6mm PCB. Cannot be turned into 2mm due to component height on bottom of PCB → final JEP would require special crate with 1.6mm rails in JEM slots
- A large fraction of signal lines are currently not JTAG B/scannable due to old LVDS devices
- Current main processor is expensive and slow (XCV1600E-6: 1500 €)
- Main processor would benefit from XC2V hardware multipliers (latency)
- Virtex-2 input processors could improve signal integrity on FIO
- TTC circuitry needs to be revised. (use fBGA, attach to ROC rather than control FPGA)
- Minor revisions on incoming links (no jumpers for chassis GND)
- Minor revisions of clock distribution
- VME access needs to be revised (long unbuffered address lines)
- Flash ROM configuration scheme needs to be revised
- Final CAN interface

JEM Re-design (baseline)

- Main processor: XC2V2000 (hardware multipliers)
- B/Scan-able de-serialisers : 6-channel device SCAN921260
 - Compatible to DS92LV1021/3 series
 - 196-pin, 1mm BGA package
- Input Processors 4*XC2V1500
- ROC/TTC interface XC2V1500
- Board control (VME etc.) XC2V500
- TTCrx chip on JEM
- Bring DCS and TTCrx access(VME) in line with CPM design.

Re-targeting VHDL code to Virtex2 will require some (minor) work on instantiated components: DLL→DCM, 4kbit RAM → 18kbit RAM

JEM

15 x 6-channel deserialisers : SCAN921260

4 Input Processors : XC2V1500

Main Processor XC2V2000

PCB design issues

- De-serialisers, TTCrx and XC2V are fBGAs with virtually no unused pins. 3 supply voltages (digital, analog, PLL) on de-serialisers.
- High density of vias → V_{cc}/GND planes perforated → need small vias, low clearances from via to GND/V_{cc} → high accuracy required
- Huge PCB
- PCB thickness increased to 2mm (compatibility)
- Small via diameters not possible with thick PCBs
- We need high V_{CC}/GND distributed capacitance → thin FR4 sheets/prepreg (shrinkage) → reduced accuracy

JEM1

Due to PCB issues, work on schematics has been discontinued and layout of a sub-set of the schematics was started:

Preliminary layout of input block with 4 de-serialisers and one input FPGA is under way and is being discussed with the PCB manufacturer (*Andus*).

→ cost, technology (blind vias, micro vias,..?), timescale

Fallback solution: old-style JEM 1.6mm, daughter boards?

Even though there won't be large amounts of (ATLAS) money spent on the first batch of JEM1s, a review will be appropriate due to technological challenges.

JEM1

First feedback from PCB manufacturer:

- We share our problems with everyone using modern fBGA devices with full ball array as opposed to ring of balls.
- Urged to go to 1.6mm PCB. It is no problem to have thicker board edges that fit the rails. Mechanical structures within a PCB are standard technology. Even integrated stiffeners are possible, if required.
- With 1.6mm thickness 250 µm vias are possible. We are guaranteed to have 150µm of metal between two 1mm spaced vias. Recommendation for power planes: use GND/V_{CC}/GND sandwiches throughout to increase distributed capacitance.

Full slice test

Slice test will take place in x/2003

- JEMO.1 is available now
- JEM0.2 is under production now
- 1-2 JEM(s)0 will be submitted in (x-2.5)/2003
- Have JEMs1.0 available in ongoing slice test at a later stage
- JEM1 seriously different from JEM0, expect minor PCB revisions (JEM1.1) for production modules