Various Simulation Updates

Farm Status **Trigger Tower Simulation** Forward Jet Update

Alan Watson

Level 1 Joint Meeting, Birmingham, 7 November 2002

Birmingham ATLAS PC Farm

The new toy has arrived

- 38 dual 2 GHz P4 nodes
- I GB RAM/2-proc node
- 4 TB RAI D

Current Status

- 24 nodes, 50% RAID on-line
 - To avoid overheating room!
- 2 login nodes, batch on rest
- DC1 software running
 - Validation OK
 - Start pileup production soon

Trigger Tower Simulation – Wish List

Currently:

- Form Trigger Towers directly from calo cell E_T
- No noise or calibration, purely geometrical summation

I deally:

- Correct summing of cells \rightarrow towers
 - Non-geometrical in several places
- Correct noise levels
- Time profile of pulses
 - Allow full simulation of Level-1 PreProcessing

Trigger Tower Simulation - Plan

Breakdown of work

- LAr analogue tower simulation \Rightarrow LAr group
 - Fabienne LeDroit
- Tile analogue tower simulation \Rightarrow Tile group
 - Frank Merritt
- Digital processing \Rightarrow Level-1 group
 - Alan Watson (!)

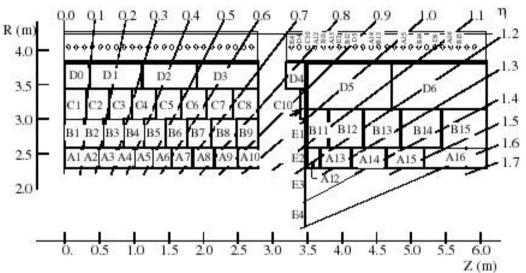
Timescale

Aim to have something by end of year

Example: Tile Towers

TILECAL CELLS

Start from "TileHits"


- Correspond to PMT signals
- Sum to towers as \Rightarrow

Properties

• 30×64 towers

- h = -14-15, **f** = 0-63

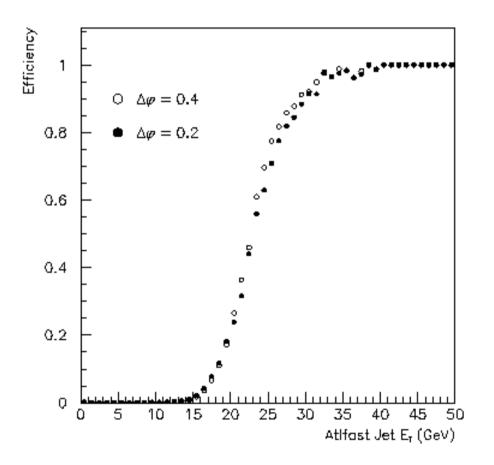
- Return tower identifier
- Return E_{τ} in 9 time samples
 - As for TileDigits
- Various iterators
 - All towers, rectangular areas

Not fully resolved yet

- Is zero suppression possible?
 - Will be some threshold below which no chance of tower hit
 - Must include noise in the equation

Forward Jet Algorithm Options

Distinct:


- Base on FCAL granularity
- Add last endcap elements to provide overlap

Continuous:

- Base on endcap granularity
- Divide FCAL towers and use common algorithm

Preliminary Forward Jet Performance

Threshold Sharpness

Rates (Forward+Backward)

 $\mathcal{I} = 2 \times 10^{33} \text{cm}^{-2} \text{s}^{-1}$ (no pileup!) 95% efficiency thresholds

Thresholds	Rate (kHz)	
F+B > 20 GeV	60	
F+B > 30 GeV	6	
F+B > 40 GeV	1.5	
F+B > 20, 40 GeV	10	
F+B > 30, 40 GeV	4	

Combination Triggers (Preliminary)

• $\mathcal{I} = 2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$. No pileup (beware!).

• EM = 95% efficiency. TAU, XE = hardware thresholds

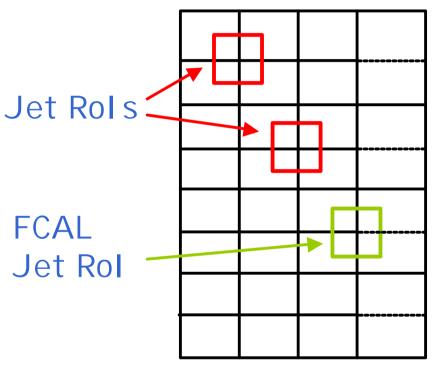
	F+B > 20	F+B > 30	F+B > 40	F+B > 20,40
EM15i	2 kHz	70 Hz	-	500 Hz
2×EM10i	500 Hz	_	_	70 Hz
TAU15i	4 kHz	900 Hz	300 Hz	1.3 kHz
2×TAU10i	400 Hz	70 Hz	-	130 Hz
XE20	6 kHz	1.7 kHz	800 Hz	3.5 kHz
XE30	900 Hz	300 Hz	130 Hz	700 Hz

Alan Watson

How to define "Forward" Jets?

Default:

"Forward" = FCAL


Easy(ish):

• "Forward" includes $|\mathbf{h}| > 2.4$

Physics Preferences:

- "Forward" includes $|\mathbf{h}| > 2.0$
 - possible with firmware mods
 - not ideal (3 JEM firmwares)
- Analysis uses "rapidity gap" rather than fixed h ranges
 - not natural, but CMM could implement it
 - matching responses of FCAL and central jets an issue?

Outstanding Questions

What is best algorithm?

- "0.2" granularity preferred technically
- How should we define "forward"?
 - By default, "forward jet" = FCAL
 - Could (in principle) count jets at smaller $m{h}$ as "forward"
 - Strongly favoured by Higgs WG
 - Consequences require study
- What is real performance?
 - New simulation software and datasets should answer