
Secondary RoIs

Alan Watson (Birmingham)

Level-1 Joint Meeting, Stockholm, 4 July 2002

What is a "secondary RoI"?

Any RoI not involved in trigger decision

- 2E15I \rightarrow both e/ γ RoIs "primary"
- 1MU6 + 1E15I \rightarrow e/ γ RoI would be "secondary"

An RoI may be intrinsically secondary:

- Low-E_T object (probably unisolated)
- Not used anywhere in CTP trigger menu
- Used purely to guide additional selection in Level-2
 - use secondary e/γ or jet RoI to guide LVL2 B triggers
 - use secondary e/ γ to ensure full readout of H \rightarrow 4e at high lumi (where may prescale Z \rightarrow ee)

Implementation

Nothing Special

- Just set desired thresholds
- Will send multiplicity to CTP (which will ignore it)
- Our electronics makes no distinction between "primary" and "secondary" selections

Is there a problem?

- Uses 1/8 of our thresholds & Calo \rightarrow CTP bandwidth
- Not a problem provided have spare capacity
- This was included in estimates of required no. thresholds
 - only an issue if we've underestimated requirements

Could Requirements be Underestimated?

Current design

• 8-16 e/γ + 0-8 τ/h classifications (E_T + isolⁿ)

Why so many?

- May need > 1 classification for single trigger menu item
 - isolation should be loosened for higher E_T objects
 - conversely, 1 classification may have > 1 use in trigger menu

But even so?

- Hard to imagine need > 16 e/ γ classifications
 - could add more by restricting multiplicity, FPGA capacity permitting
 - pressure could arise if t trigger more important than expect

e/γ

What might demands be?

- Inclusive
 - 2-3 classifications
- Pair
 - 2 classifications
- Multielectron
 - 1 classification?
- Secondary RoI
 - 1 classification
- e+E_Tmiss
 - 1 classification
- e+μ, e+τ, e+nJet
 - ≤ 1 each

τ/h

- Inclusive
 - 2 classifications
- Pair
 - 1-2 classifications
- Secondary RoI
 - 1 classification
- Calibration (prescaled)
 - 1 classification
- τ + E_T^{miss}
 - 1 classification
- τ+μ, τ+e, τ+nJet
 - ≤ 1 each
- Even if all needed, can reuse some classifications for > 1 purpose

No.

Is there an alternative?

11 Yes (in principle)

- add extra $e/\gamma \& \tau/h$ thresholds
 - cluster E_T only, no isolation
- do not output CTP "hits" for these
 - those 48 (16×3) bits are a finite resource
- these additional thresholds only generate RoIs
 - RoI with no threshold bits set could indicate secondary (but could not distinguish e/g and t/h)

Is it possible?

Would require "only" software & firmware changes

A Radical Extension (just a bit of fun!)

Classify objects by function, not E_T + isolⁿ

- e.g. output 1 hit type for "inclusive e/ γ ", rather than 2-3
 - same number of hit classifications would go further

How could this work?

- within FPGA, encode RoI E_T & isolation separately
 - E_T is natural, though no exact hierarchy for isolation
- input E_T + isolⁿ codes to small LUT
 - output all functional classifications matched
- gain more with > 16 E_T thresholds (need fewer isolation)
 - but some gain just from mixing & matching E_T & isolation

Drawbacks?

- might need bigger FPGA
- would add a little latency

Leave this for the upgrade ©

Summary

The issue is "necessarily secondary" RoIs

 some RoIs types may be primary or secondary in different events

Our current design can accommodate these

by treating them as any other selections

There is some inefficiency

• "wastes" 6/48 of the bits we send to the CTP

There is an alternative

- which we can use if we need it
- hard to assess need in advance (but we don't currently believe there is a problem)