

Concepts in the Software Overview Document

C .N .P .Gee Rutherford Appleton Laboratory

Terminology

- ROD-crate DAQ will be used with and in all our trigger processor and readout crates during testing and final ATLAS.
- Some terminology:
 - RCC (ROD Crate Controller): the single-board computer in each crate
 - RCW (ROD Crate Workstation): A workstation connected to RCCs by Ethernet and providing an operator interface.
- Calo trig subsystems will be controlled during testing from RCWs. There may be several separate RCWs each controlling separate subsystems doing independent testing.

Parallel Tests

Terminology (2)

- In the slice tests, commands will be issued from a Master Control Workstation (MCW) –
 - a link is established between the MCW and RCW run controllers,
 and each RCW run control functions as an MCW slave.
 - commands are sent hierarchically from MCW to RCWs and on to slave run controllers in the RCCs.
- In final ATLAS, an Overall Master Control Workstation will send commands to the detector MCWs.

Slice Test

Full System in ATLAS

Crate and Workstation Startup (for any of these configurations)

- Start with all components are powered down, but all modules are in place in the required crates, computers are connected by Ethernet, and all inputs, high-speed links and readout links, TTC connections and all other necessary cabling are in place.
- Then turn on crates and computers in any order.
 - Trigger processing modules enter their power-up reset state.
 - All computers boot into Linux
 - Diskless single-board computers boot over Ethernet from a workstation acting as boot server.
 - Start-up scripts initialise online system infrastructure

Operator Partition Selection

- The operator logs into a control workstation
 - He runs a script to initialise a partition and start the run control.
 - The partition selects the modules to be used.
- The main run control starts and displays its operator panel
 - There are discussions about dynamically adding/removing modules without stopping and restarting the complete run control. You can't do this at the moment.

Starting a Run

- The operator selects the required run type from a run control menu, and sets any additional parameters.
- He then requests system state transitions from "Initial" to "Loaded" to "Configured" to "Active".
- State transition commands are sent hierarchically to to slave run controllers on the RCCs in each crate. These interact with modules through the module services.
 - For each module, the RCC creates an appropriate module services object.
 - Using the run type and parameters the RCC creates a database <u>view</u>, and passes this to all module service objects.
 - The module service retrieves register and table values from the database view and sets the module hardware as needed.
- The actual settings used are recorded in the "conditions database".

Enabling Events

- When the system completes the transition to "Configured", all modules are executing the real-time trigger processing algorithms.
- L1A generation is inhibited by Busy signals.
 - Each partition has a Detector Central Trigger Processor Interface
 (DCTPI) module which manages the busy signals.
- On the transition to active, all error counters are cleared, ROD Busy signals are removed, and finally the DCTPI Busy is cleared.
- L1As can now be generated.

While the System is Running...

- Module services poll error counters in modules and issue alarms if error rates exceed thresholds
- DCS values (temperatures, voltages) are checked by our CANbus controllers. Alarms are sent to online software if out-of-range values are found.
- Monitoring programs obtain events, perform analysis, create and fill histograms & tables.
 - The histograms & tables are published, and can be selected, displayed, and cleared from workstations in the experiment.
- A status repository is updated and displayed. The operator can display status information on one or many screens, and can change the number and content of status screens during any run.

Ending Runs

- Using the run control panels, the operator requests a run end.
- The command is passed to the modules services for the DCTPI, where Busy is asserted.
 - L1As stop when Busy reaches the trigger source.
- The last event flows through system (how do we know?)
- Monitoring programs complete their analysis and save histograms and statistics (where?)
- Run statistics are saved in the book-keeping database.
- The system completes the state transition back to "Configured"

Using Test Data

- The user decides on a grouping of modules for a test.
- He creates an English-like Test Descriptor
 - contains a test name, specification of the data patterns (e.g. "ramp")
 - plus all module settings (e.g. thresholds) needed for the test.
 - This is saved to the database.
- The system is then set up for a run as described above.
- Modules services interrogate the database view for simulation data.
- Now (or earlier) the simulation package is run.
 - It reads the Test Descriptor and computes the binary input data
 - and the expected output data produced by the algorithms.
- The system is run and outputs compared to expected output.
- The pattern of L1As is specified with the Test Descriptor and generated by the DSS.

End

The End