CPM Testing

Steve Hillier
Gilles Mahout
Richard Staley

Serialiser Chip:LVDS path

LVDS receiver:

- LVDS signals locked correctly
- Was working earlier but lock signal was mishandled inside serialiser

Serialiser:

- F/W correction: mishandling corrected and ...
- Data generated in DSS playback memory correctly recovered inside SRL playback memories
- Minor correction needed to generate init_sync on board, but synchornisation could be performed easily by hand

To do:

- Soaking test
- investigates other channels, so far 1 SRL tested

Hit Merger

- With the help of extender and logical analyser:
 - Access to real time data path
 - Bit correctly generated and in right order
 - Glitch appear from time to time, F/W problems?

Readout Controller DAQ & Roi

- With the help of logical analyser:
 - Check validity of Data, DAV signal and slices: working correctly
- To be done:
 - Feeding into Glink DR available in the lab:
 - F/W could be modified to generate a pseudo random pattern and be recovered in Glink sink card: soak test

CP chip F/W investigations

- Data are corrupted on 2 or 3 channels from time to time
- James and Ian came with Chipscope (4) to investigate the problem
- Problem coming from the serialiser was eliminated
- Problem appear to be in the calibration process

CP Chip F/W investigations

- Calibration process problems:
 - Channels locked but the process of calibration was odd
 - Channels refused to lock
- The way the calibration process works:
 - Up to 4 attempts of calibration are performed on each channel
 - Expect channel to lock on the first attempt
 - Corrupted data appear on channel locking after several attempts
- F/W investigation: see next slides->

CP chip: Calibration Process

CP chip F/W investigations

- Several F/Ws have been written by James to understand misbehavior :
 - One F/W generate internally the calibration pattern: expect 100% of pins locked but only 92% did
 - One F/W output 160 MHz signal generated by the Fpga for 4 different phases, and used by the calibration process
- Shape of waveform of the 160 MHz is not very nice, and the relative phase between them not constant:
 - But agree with simulation!
 - Need a better jitter and precision of 1.65ns apart

Solution:

- Meeting in January: tutorial on calibration process
- By-pass calibration process, do it with S/W (relative input signals better than 1 ns)
- Upgrade Fpga?

900 phase difference between the 4

160 MHz signals

Trigger is on 40 MHz clock

 $\Delta \phi$:1.6 ns

 $\Delta \phi$:1.ns

 $\Delta \phi$:1.5.ns

Jitter:450ps

CPM Services - Software

- Not much unfortunately!
 - Used Hdmc successfully without the segmentation fault
- To be done
 - Run Controller integration
 - New database format
 - Change in Fpga downloading
 - Integration with external modules such as DSS

Conclusion

- CPM is almost fully working:
 - CP chip F/W show some problems: delay???
 - Need testing all LVDS inputs, tedious: 1 day
 - I2C access with new TTCdec card: 2 days
 - CAN bus: 1 day
 - Soaking tests:
 - more LVDS signals needed
 - ROC F/W to be modified

S/W:

- Works to be done: 1 student available for January and February
- 2nd CPM, once assembled:
 - Testing algorithm and backplane, with help of GIOs and more DSSs