A Mixed Bag of Simulation Stuff

Alan Watson

Birmingham ATLAS PC Farm

The new toy has arrived

- 38 dual 2 GHz P4 nodes
- 1 GB RAM/2-proc node
- 4 TB RAID

Applications

- MC production
 - Trigger-specific datasets
 - Data Challenges
- GRID development
- Warming the computer room ⁽²⁾

What next?

- Install software
- Start to use it!

TrigT1Calo Validation

Technical Tests OK

- Cluster, isolation sum formation correct
- Thresholds correctly applied
 - Cluster > Threshold
 - Isolation ≤ Thresholds
 - These conventions allow to disable isolation or switch off threshold
 - Different from Atrig, but these are correct
- Trigger bits set correctly
 - Thresholds = 1-16
 - Bits = 0-15

Threshold: $E_T > 16 \text{ GeV}$

Level 1 UK Meeting, Birmingham, 17 October 2002

Alan Watson

TrigT1Calo-Atrig Comparisons

Conditions

- Turn off Atrig noise, calibrations
 - not implemented in TrigT1Calo
- Use same TDR datasets

Tests

- Single particle events most sensitive tests
 - few minor problems spotted and fixed
- Distributions not identical, but consistent

Comparisons - 20 GeV e-

Level 1 UK Meeting, Birmingham, 17 October 2002

Alan Watson

DC1 Datasets

New detector model

- More material
- Larger inter-cryostat gap
 Nothing qualitatively
 different
 - some effects more pronounced
 - calibrations, thresholds will be different

Trigger Tower Simulation

The Plan:

- Trigger tower simulation with
 - correct geometry
 - correct noise
 - pulses with time profile
- Realistic PreProcessor simulation
 - FIR based BCID
 - FIR/LUT based calibration, thresholds
- Integration with TrigT1Calo
 - PPr sim \Rightarrow TriggerTowers

The Proposal:

- Similar breakdown to hardware
 - Tile group \Rightarrow TileT1Towers
 - LAr group \Rightarrow LArT1Towers
 - LVL1 group \Rightarrow PPr sim
- People identified
 - Tile: Frank Merritt
 - LAr: Fabienne LeDroit
 - LVL1: ATW
- Tilescales
 - Tile: soon
 - LAr: end of year
 - LVL1: between the two

Forward Jet Algorithm Options

Distinct:

- Base on FCAL granularity
- Add last endcap elements to provide overlap

Continuous:

- Base on endcap granularity
- Divide FCAL towers and use common algorithm

Preliminary Forward Jet Performance

Threshold Sharpness

Rates (Forward+Backward)

 $\mathcal{I} = 2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$ (no pileup!) 95% efficiency thresholds

Thresholds	Rate (kHz)
F+B > 20 GeV	60
F+B > 30 GeV	6
F+B > 40 GeV	1.5
F+B > 20, 40 GeV	10
F+B > 30, 40 GeV	4

Combination Triggers (Preliminary)

• $\mathcal{I} = 2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$. No pileup (beware!).

• EM = 95% efficiency. TAU, XE = hardware thresholds

	F+B > 20	F+B > 30	F+B > 40	F+B > 20,40
EM15i	2 kHz	70 Hz	-	500 Hz
2×EM10i	500 Hz	-	-	70 Hz
TAU15i	4 kHz	900 Hz	300 Hz	1.3 kHz
2×TAU10i	400 Hz	70 Hz	-	130 Hz
XE20	6 kHz	1.7 kHz	800 Hz	3.5 kHz
XE30	900 Hz	300 Hz	130 Hz	700 Hz

Alan Watson

Default:

• "Forward" = FCAL

Easy(ish):

- "Forward" includes |h| > 2.4
- **Physics Preferences:**
 - "Forward" includes |h| > 2.0
 - possible with firmware mods
 - not ideal (3 JEM firmwares)
 - Analysis uses "rapidity gap" rather than fixed h ranges
 - not natural for architecture
 - not enough internal bandwidth to do properly
 - can explore practical approximations

How to define "Forward" Jets?

Outstanding Questions

What is best algorithm?

- "0.2" granularity preferred technically
- How should we define "forward"?
 - By default, "forward jet" = FCAL
 - ullet Could (in principle) count jets at smaller $m{h}$ as "forward"
 - Strongly favoured by Higgs WG
 - Consequences require study
- What is real performance?
 - New simulation software and datasets should answer