Simulation Status and Rate Update

Recent Developments Recent Lack of Development

HLT TDR Results

Alan Watson

UK Level-1 Meeting, RAL, 19 May 2003

Suite of Algorithms Growing (Ed)

- now includes E_{τ} triggers & forward jets
- Updates to Tower Simulations (Alan)
 - tower sum noise added
- Keeping up with other packages (both)
- one of the biggest demands on developers!
 And a little bit of bug-fixing
 - the "-ive E_{τ} Rol bug" was instructive
 - odd, rare effect seen with pileup revealed subtle logic error

Tower Simulations

Much less progress than hoped

- Tower objects exist
- am able to read them
- decoding identifiers \rightarrow coordinates not simple
 - much help from Fabienne
 - think I'm close
 - but now pushed aside by other demands

Performance Studies for HLT TDR

A division of labour has evolved

- Ed handling threshold plots
- Alan producing rate estimates

Rate Studies

- Base on Common Ntuple, default tunings/tower parameters
- Datasets: single electrons, $Z \rightarrow e^+e^-$, dijets
 - with pileup (2*10³³, 10³⁴), calorimeter & tower noise
- Write Root classes to analyse

Use single electron samples

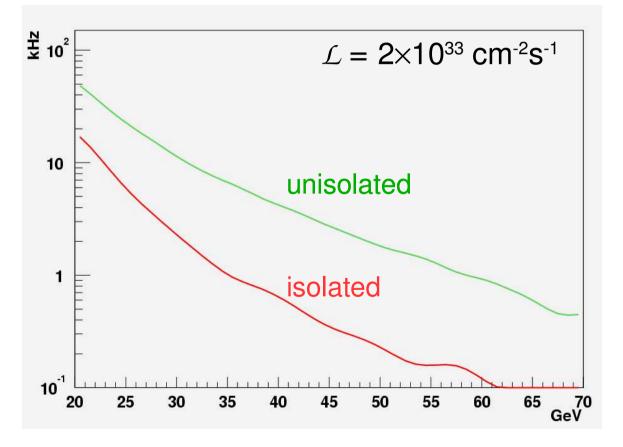
• Statistics better than $Z \rightarrow e^{\scriptscriptstyle +} e^{\scriptscriptstyle -}$

Identify possible isolation cuts

- 3 isolation variables to combine
 - consider tight sets ($\epsilon \approx 95\%$) and looser (97-99%)

Choose corresponding cluster thresholds

- select events in fiducial region
 - exclude barrel-endcap transition
- choose thresholds for 95% efficiency
 - typically lower for tight isolation, higher for looser


Rate Estimation – Inclusive Triggers

For each threshold/isolation set

- Calculate fraction of dijets passing isolation vs cluster E_{τ}
- Scale by:

L×o/filter rejection

- Shift $E_{\tau} \rightarrow p_{\tau}$
 - from threshold cuts
- Choose isolation giving best rate

UK Level-1 Meeting, RAL, 19 May 2003

Inclusive Rates – DC1 Data

Low Luminosity

- Isolation $E_{\tau} \leq (3,2,2)$ GeV
- Rate for EM20I = 17 kHz
 - L1 TDR \Rightarrow 21 kHz
- Rate for EM25I = 5.3 kHz
 - L1 TDR \Rightarrow 10 kHz
 - different isolation cuts give
 6-7 kHz

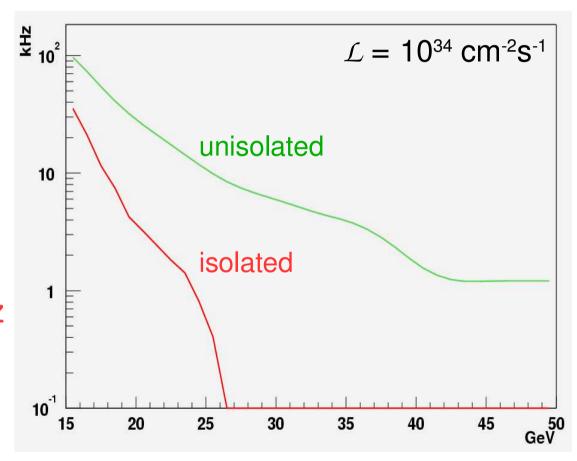
Design Luminosity

Isolation $E_{\tau} \leq (5,2,2)$ GeV

- Rate for EM30I = 23 kHz
 - L1 TDR \Rightarrow 22 kHz

Comments:

- Tower thresholds not optimised (should not be same for both *L*)
- May be some changes with full tower simulation.


Pair Rates (Preliminary)

Similar Procedure

- Isolation efficiency > 97.5%/electron
 - pair efficiency > 95%
- Cluster+Isolation > 95%
 - pair rarely have same p_{τ}

Rates

- 2×10³³: 2EM15I ≈ 2 kHz
- 10³⁴: 2EM20I ≈ 3-4 kHz
- Slightly better than L1 TDR

Alan Watson

UK Level-1 Meeting, RAL, 19 May 2003

Why ask this again? A parting shot from Thomas:

- CTP will produce deadtime
 - too close to last triggered event, ROD busy,.....
- Define "high-priority" triggers which override
 - which will be selected nevertheless
- Must be lower rate than standard triggers
 - so higher p_{τ} (also more interesting for physics)
- May be additions to previously considered trigger menu
 - hence this question comes back again...

Maybe:

- Menu in Thomas/Stefan's draft note uses 5 inclusive em thresholds
 - 3 "discovery motivated", 2 "high priority"
- Does not consider loosening isolation as end in itself
 - I've usually budgeted 3 inclusive thresholds for this purpose
- Have doubts about 3 "discovery motivated" thresholds
 - using resources just to tell LVL2 the ET of the object
- Need to discuss further
 - also suggests several prescaled thresholds
 - awaiting reply to my email...