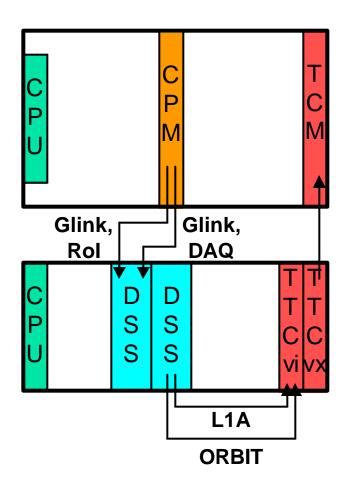


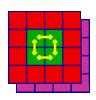
CPM testing: Glinks, DAQ and Rol

- o Initial tests at RAL
- o Birmingham test setup
- o Problems:
 - o Hardware
 - o Firmware
 - o Software
- o Summary of Results

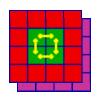
Initial tests at RAL


- o Took place mid August
- First serious use of DSS L1A Generation
 - o Of which more later...
- Using ROD to DSS slink sink
 - o Plus standard cpRod Test software analysis
- Correct pattern of Rols captured
- Correct DAQ data captured, 1-5 slices
- Hit data incorrect (firmware formatting)
- BC Numbers incorrect (no BC reset generated)

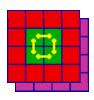
Birmingham Test Setup



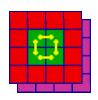
- DSS (GI O/ECL variant)
 - o Produces L1A and ORBIT
 - Connected directly into TTCvi
- O TTCvi/TTCvx
 - Programmed to use external trigger and orbit
 - Also program B channel 0 to produce BC-reset
- o CPM
 - Serialiser playback data
 - o (Could also use LVDS DSS)
- DSS (Glink sink variant)
 - Accepts any Glink packet
 - O CPM DAQ or Rol
 - Also tried CMM briefly
 - Filling controlled by software
 - Has some advantages over using ROD


Problems: Hardware

- CPM #4 DAQ Glink output initially failed
 - o Dry joint on chip (not checked by JTAG)
- CPM Glink outputs failed to lock with two CPMs in adjacent slots
 - Noise on power supply
 - o Only occurs once serialisers (on other CPM) loaded
 - o FIO load from backplane was causing a component to oscillate
 - o Richard implemented temporary fix (new design should be OK)
- DSS Glink input instability
 - Could not get new Glink sink cards to lock reliably
 - o 'Solved' by reverting to original Glink sink daughter-card
 - o Possibly new cards would work with better cables/grounding etc


Problems: Firmware

- Final parity bit on Rol and DAQ inverted
 - o Fixed quickly while still at RAL
- Parity bits on 2nd and 4th slices inverted
- Hit words formatted incorrectly
- o Problems with closely spaced triggers:
 - o Parity incorrect in Rol stream
 - o Data length problem with 5 slices
- Much work needed on readout offsets
 - o Three offsets needed:
 - Data into DAQ stream
 - Hits into DAQ stream
 - Rols into Rol stream
 - o Settings need to be stable run-to-run
 - Needed PLD update to decode TTC commands correctly


Problems: Software

- o Required better understanding, then new software for TTCvi
 - o Signal parity of TTCvi inputs
 - o Tuning of TTCvi input timing
 - o Generation of BC reset
 - o Generation of synchronous playback memory start
- Needed new DSS readout and control mechanism
 - o Created 'glink kicker' cf cpm kicker, cpRod kicker
 - No synchronization between readout software and L1As
- Needed new parameters in database
- Some untested software features used for first time

Summary of Results

- CPM Glink streams work well on CPM#1 and CPM#4
 - o Tested up to 130 kHz
 - o Tested with closely spaced L1As
 - o Readout offsets stable and (reasonably) predictable
 - Overnight test had no errors
 - o DAQ stream with 5 slices, about 109 words tested
 - o Tests with ROD not so extensive, but so far no problems

o Comments

- Tests with DSS Glink sink invaluable
- Now have minimal, but sufficient equipment and software tools to fully test a CPM at Birmingham