
Readout Drivers (L1Calo 6U Prototypes) Current Status

Overview

- Firmware Status
- Firmware Issues
- Hardware Status
- CPM, JEM and CMM Integration
- ROD Readout
- ROS Hardware

Firmware Status

CP Data : Stable

- **CP-Slice-16**: Bit 23 set in hit data words.
- CP-Slice-17: Treatment of PP->CPM statusBits (S-ink trailer and hit words)

JEM Data:

Stable

- Assembly ok. Multi-slice operation ok.
- Formatting Mods (Crate ID) required

CP Rol :

Stable

- Flow control needs to be confirmed
- Cmm Cp Data:

Stable

- CpCmm-Slice-1: Various Bit field errors
- JEM Rol:

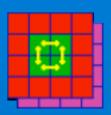
in Progress

- Jem-Rol-1: Zero suppression behavior understood
- James awaiting feedback
- Other tests and extensive lake studies have delayed.

done

f/w specification and implementation

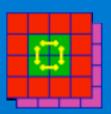
done


f/w specification and implementation

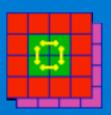
done

testing

robust?


testing

Firmware Issues


- New Designs:
 - James awaits specification for 4/5 CMM variants:
 - CMM JEM Slice Data
 - CMM JEM Rol
 - CMM Energy Slice Data
 - CMM Energy Rol
- Existing Designs:
 - Specification Errors
 - Formats require rationalisation
 - Started but stalled

Hardware Status

- Tested and needing refurbishment:
 - S/N 1,2,4,7:
 - 1&2: Tested extensively (CP Slice and Rol)
 - 4&7: Tested except for flow control/ Dual S-Link operation.
 - Refurbishment means:
 - New G-Links Daughters
 - TTCDec replacement (when TTC fanout available.)
- In-System:
 - S/N 3,5,6,8
 - Modules have
 - New Generation G-Link Cards
 - Redesigned TTCDecs (2-pin lemo inputs, no longer require special interposer daughter card for assembly)
 - Equipped with JEM-Data, CPM-Data, CPM-Rol and CP-CMM firmware
- G-Link Problems:
 - Better understood and more stable links.
 - Long term optical solution.

CPM, JEM and CMM Integrations

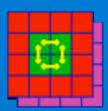
Readout:

- One channel of one ROD.
- L1A and orbits generated by DSS/GIO (controlled by simulation.)
- Kicker acquires and compares events.

CPM:

- Data: Simulation and Hardware consistent. Aligned.
- Rol: Simulation and Hardware consistent. Alignment understood.

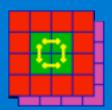
JEM:


- Data: Simulation and Hardware aligned,
 - but channel mapping to be understood.
- Rol: H/W output not available.

CMM:

- Initial tests:
 - With JEM: Work on understanding simulation and hardware underway
 - With CPM: CPM available ... initial tests at RAL and Birmingham (?). To continue

Future:


- Multiple module:
 - Operation and consistency checks.

Rod Readout

- Issues in Triggering:
 - Busy Handling
 - Either
 - Wrap playback memories around each orbit, in which case current DSS/GIO BUSY strategy of delaying start of new trigger-orbit sequence until BUSY deasserted is ok.
 - Wrap-64. Re-implement DSS BUSY strategy so that empty orbits follow trigger-orbit sequence and BUSY results in an increment by 64 of the emtpy orbit count.
 - Testing
 - Interaction with CTPD.
 - Single BUSY module prototype could be available in October.
 - To be negociated with Per Gallno
- ROS:
 - Currently, readout proceeds via the DSS.
 - Need to be able to readout with ROS:
 - 8+1 links in one PCI machine
 - Issue: CTPD, as is, can't use FILAR.
 - New H/W available Mid October. Need to commission ROS with ODIN hardware by then:
 - ROS exercise.
 - Intermediate solution.

ROS Hardware

- HOLA Source S-Link Source
 - Single fibre-pair version of ODINS.
 - Require 3.3V signalling and 3.3V power:
 - Birmingham designing adapter board.
- FILAR quad S-Link Sink
 - Accommodate 4 HOLAs (3.3V PCI)
 - 66 MHz / 64 bit, so 4 times bandwidth of old PCI interfaces.
- ROS:
 - New fast box with
 - 4 independent PCI-X busses (6 slots)
 - Dual Processor: 3 GHz
 - GC-LE chipset

