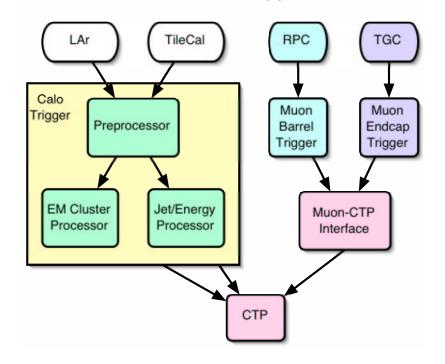
Level 1 Calorimeter Trigger Database

Murrough Landon – 3 February 2003

for the Level 1 Calorimeter Trigger group


Overview

- Introduction
- Common Level 1 Requirements
- L1Calo: Configuration Data
- L1Calo: Conditions Data
- Archiving, access
- Summary

Introduction

Level 1 Trigger

- "Level 1" comprises the calorimeter trigger, the barrel (RPC) and endcap (TGC) muons triggers, the central trigger processor (CTP) the Muon CTP interface
- The database requirements of different "Level 1" subprojects will vary, though there are also many common features.
- This talk concentrates on the Level 1 calorimeter trigger

Level 1 Trigger

Summary

- Some general requirements across the whole of level 1 were summarised last year in the two main areas
- Configuration data: functionality required from the database service to configure the system for any given use
- Conditions data: all information that is to be kept in order to remember the configuration, behavior and performance of the system

http://cern.ch/Atlas/GROUPS/DAQTRIG/LEVEL1/software/level1_databases.html

Configuration Data

- Hierarchical schema reflecting the physical architecture
- Several selectable (sub)configurations/calibrations exist in parallel. Especially applies to the pool of trigger menus
- Versions of parallel configurations need to be archived and the last few must be easily accessible
- Resource management is applied when loading the current configuration
- Parameters flagged as modifiable (or not) after being submitted. The parameters can be either overwritten or a new configuration is generated
- Consistency of a configuration checked before it becomes active

Access and Availability

- Access time is an issue especially at run start... Total configuration data is a few tens of Mb, but state transition times must be only a few seconds
- Action of loading a configuration triggers an update of the conditions DB
- Calibration data may be created in ROD crates, event filter or offline. It must be possible to store (and access) new configurations from all those sources
- Both configuration and conditions database must be accessible all the time (24/7) also outside running periods
- Access control needs to be flexible: only experts to change the configuration while normal users should be able to take new configurations

Conditions Data

- Correlation with other databases (timestamp, run number)
- All aspects of the online configuration setup including calibration and trigger menu used
- Detector geometry including cabling, dead/hot channels
- Production data including history, when used, repairs
- Log of activity on the system (eg Online book keeper)
- Monitoring data: histograms (subset), DCS data, error conditions, run statistics, beam and machine conditions

Introduction

- Recent and current focus is on hardware testing
- We have been using and extending the present Online configuration database
- We are only starting to think about future conditions database requirements

Hardware Configuration

- Crates, modules and their subcomponents (down to detailed level)
- Cables from detector and between trigger modules
- Mappings of trigger towers to detector channels
- Total size \sim 1 Mb, changes infrequently?
- One variant (TDAQ partition) for standard ATLAS running plus calibration and test variants, versions stored by run number
- Q: connection between online configuration and offline detector description databases?

Firmware

- Collections of firmware programs used by modules
- There will be many simultaneously valid variants for a given type of module, especially in the CTP where a pool of available trigger menu loads is required
- Database may hold pointers to binaries which are stored separately
- But archiving (and retrieval) is required with intervals of validity (probably by run number)
- Total size 10-50 Mb for L1Calo, changes infrequently (maybe frequently in the CTP)

Calibration

- Energy calibration: 8 Mb, changes daily?
- Pulse shape (BCID) calibration: 50 kb, changes occasionally?
- Timing calibration: 50 kb, changes rarely
- Dead and hot channel map: <<1 kb hopefully!
- All calibrations, and variants for tests, have version history probably by run number (which is when they are loaded)
- Calibrations may be updated either by online processes between normal runs or by offline processes at any time
- Dead/hot channel maps might get a burst of updates in a short period if a channel is "flaky" and seems to die and come back to life frequently, so versions should be time stamped

Miscellaneous

- Various other parameters to be loaded into the hardware to configure it into the correct mode for data taking: 1 kb, changes rarely?
- Test vector files: data used to check the trigger hardware. Some generated on the fly according to prescriptions, some physics data needs to be stored in bulk (many Gb?)

What to store?

- The complete configuration used for each run
- Results of hardware monitoring (statistics, histograms)
- Results of trigger rates monitoring (statistics, histograms)
- Results of trigger decisions monitoring (statistics, histograms)
- Summary of monitoring data from DCS?

When and how?

 Monitoring data logged during run may need to be keyed by run number and event or time stamp within the run

Availability, completeness, test setups

- In ATLAS, fast 24/7 access to latest version of any database object
- Also desirable to have fast access to the previous version (however old) and all recent versions (last few days)
- Access to latest versions of all database objects needed at run control state transitions
- Where variants exist (eg firmware loads) the conditions DB must contain the details of all variants and record which variant was used for a given run
- Also need standalone implementation (local files, a la OKS?) for test setups at home labs, ie not requiring network access to remote database servers (but with the same API). May want local snapshot of part of a larger database. NB remote test rigs suffer from software decay, using old versions, etc

Update times and responsiveness

- Online run controllers: read \sim 20 Mb at state transitions, new calibrations created offline only used at this point whenever they become available
- Online system: calibrations created online should be available for the next run start (may be immediately after the calibration run ends, ie seconds)
- Online monitoring (in ROD/trigger crates): update hot channel map at any time during a run. Hot channels should be suppressed by online "error handling" but other monitoring (EF, semi-offline) may want to know rapidly
- EF/offline monitoring amd simulation needs access to the calibration and other conditions used for a run to be available by the time they start processing that run. For the EF that could be very soon after run start, ie seconds

Archiving vs "Conditions Database"?

- In both cases we want to store versions of chunk of data keyed by name with intervals of validity and perhaps arbitrary tags
- Data in Conditions DB expected to be used by offline reconstruction and analysis whereas archived data will not be used offline (probably)
- Online processes may like to see a similar interface? (with different implementations perhaps)
- Offline is clearly interested in calibrations, trigger menus and versions of firmware used, dead and hot channels, cablings (and miscablings), some aspects of the hardware configuration
- Offline is probably not interested in all hardware configuration details, run controllers, software aspects of the TDAQ partition, firmware binaries, etc
- But online software would like to see the complete current configuration as a single seamless whole

Random thoughts

• How does the Conditions DB treat the conditions for a sequence of runs or a run with multiple steps (pause/resume or checkpoints) which are part of a calibration scanning some parameter?

Already announced

 Read/write access to the configuration database, automatic generation of DALs, support for cabling and firmware

Desirable

 More detailed description of modules, integration with calibration data for modules. At the moment L1Calo has separate (old) module subcomponent description. Endcap muon trigger (TGC) have a specific solution. Are there common requirements across other detectors?

Very limited!

- The L1Calo database effort (which is << 0.5 of me) is likely to be saturated with implementing common solutions to meet L1Calo specific needs
- We cannot offer any effort towards common database work in the near or medium term

Summary

- Online configuration should present a single unified view of the hardware (down to a detailed level), firmware and software setup together with the calibration, trigger menu and other data needed to configure the whole system
- The complete configuration used for each run should be recorded and be available to be restored
- Part of the complete configuration can be identified as of interest for offline processing (conditions database) while the rest may be archived in some fashion inaccessible to offline - but this division should not be apparent to online processes
- Home labs and other test setups need small local databases without empires of networks and servers
- Fast access to new online calibrations and new hot channel maps by EF monitoring