Project Specification

Project Name: ATLAS Calorimeter First Level Trigger-Data Source and Sink Module

Version: 2d.

March 2000

Approval	Name	Signature	Date
Project Manager	V. Perera	vfotena.	
		$-\tau$. $-$	

Distribution for all updates:

Project Manager:	V. J. O. Perera
Customer:	C. N. P. Gee
Group Leader responsible for Project:	R. N. J. Halsall
Project Managers of related projects:	R. Staley, R. Hatley
Account Manager:	W. J. Haynes

Last release: Version 2b May 1999 Note: Pages 11-13, 19, 21, 22 has been updated since the last release

Last release: Version 2c July 1999 Note: Pages 11, 12, 13, 14, 15, 18, 19 has been updated since the last release (See page 47)

1. Scope

Data source and sink (DSS) modules are required to generate the test patterns for testing links (G-links, LVDS, and others) and to test modules such as the prototype read-out drivers (ROD). Also the DSS module can be also used for testing the ASICs as well as MCMs.

A general-purpose motherboard will be designed to meet all the data source and sink functions as described below, with the requirement of only having to design specific daughter boards for various applications.

2.Related Projects and Documents

- 2.1 S-Link interface specification http://www.cern.ch/hsi/s-link/
- 2.2 Draft Standard for a Common Mezzanine Card Family: CMC, P1386/Draft 2.0 April 4, 1995.
- 2.3 TTCrx Reference Manual, J. Christiansen, et al, CERN-ECP/MIC, Version 2.2, July 1997
- 2.4 Specification of the 'G-Link' Daughter Boards for the 'DSS' Test Platform, R.Hatley
- 2.5 LVDS Source and Sink CMC Daughter Boards for the DSS Module, R. Staley.
- 2.6 HDMP-1022/1024 Low cost Gigabit Rate Transmit/Receive Chip set with TTLI/O, Hewlett Packard.
- 2.7 DS92LV1021 and DS92LV1210 serialiser deserialiser, National Semiconductor
- 2.8 Clock and Control Module draft 2.0 Specification, V. Perera

3. Technical Aspects

The DSS motherboard will be 6U VME with slots for two single CMC standard daughter modules or one double CMC standard daughter module. Two S-link daughter cards can also be used on the motherboard with its dedicated connectors and electronics.

3.1 Requirements and Specifications

Test modules are required for testing modules and data links for the ATLAS first-level calorimeter trigger processor.

The DSS modules will generate and receive the test data from the device under test for verification.

The DSS module will comprise of a mother board, which will implement common functions such as generate, receive and compare test patterns in real time up to 40 MHz; VME interface, control and status registers, etc.

The daughter boards will implement the physical layer to transmit/receive data up to 80 bits wide and can configure the mother board to perform source (transmit) or sink (receive) functions on either or both CMC slots. However in the case of the S-links, only one source and one destination card is possible on predefined positions (Key-in pins) on the motherboard.

3.2 DSS Mother Board

The 6U-mother board will have a standard A32, A24, D32 VME interface, and a TTC interface. Eight 32K x 32 bit Dual-port RAMs and eight FPGAs (Data FPGA) will handle the data source, sink requirements, and handle all the interface signals required by each type of daughter board. Figure 1 shows a block diagram of the DSS motherboard. The S-link data will be handled by the S-link FPGAs and the dual port RAMs for implementation convenience.

When a daughter board (except for S-Link) is plugged on the mother board, the mother board EEPROMs will be disabled and the daughter board specific logic will be down loaded to the Data FPGAs from the daughter board EEPROMs

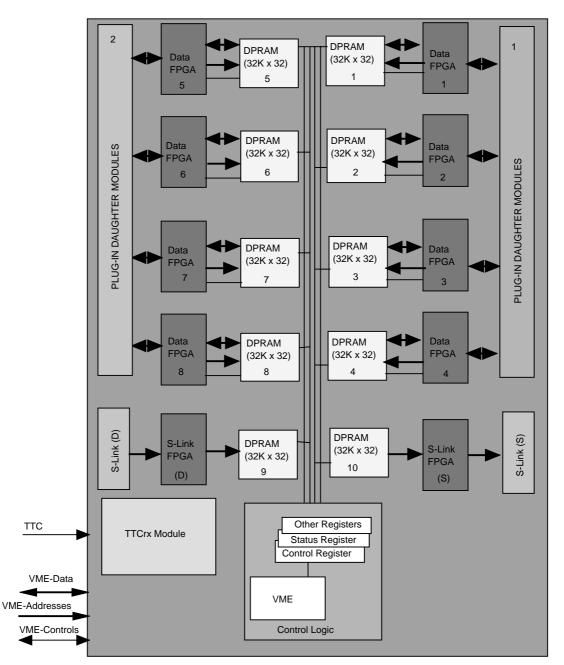


Figure 1. Block Diagram of DSS Module- Mother Board

3.2.1 FPGA Implementation

There are two types of 'data FPGAs' which handles source data and sink data in two blocks of four, interfacing to the two daughter board via the CMC connectors as shown in figure 1. The S-link data is handled by separate FPGAs.

3.2.1.1 Source FPGA

The source FPGAs will perform the following functions:

- 1. Provide interface to the daughter boards.
- 2. Implements the Serialiser ASIC readout logic. required to test the Readout Driver
- 3. Implements a Pseudo Random Bit Pattern (PRBP) generator and checker. Other data patterns such as ramps can also be implemented if required.
- 4. Directly connect the Dual-port RAM data bus on to the connector pins -allowing to generate any test pattern.
- 5. FPGA code can be developed to implement the test data for the Jet system.
- A block diagram is shown below.

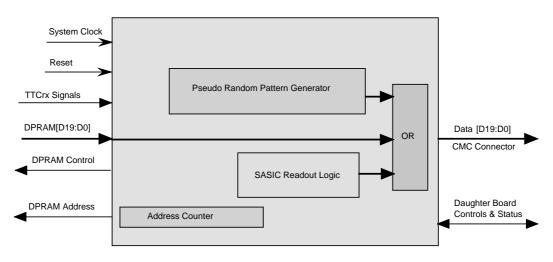


Figure 2. Block Diagram of the Source FPGAs

3.2.1.2 Sink FPGAs

The sink FPGAs will interface between the Dual-port RAM and the daughter boards, recording the data on to the dual-port RAM from the daughter boards, which can then be accessed via the VME. It will also provide:

- 1. Bit error checking facility on the PRBP data, this data is also written onto the dual port RAMs.
- 2. Bit error checking between the received data and pre-loaded data on the dual port RAM.
- 3. When an error occurs the data word is recorded onto an internal register with the contents of the address counter, which can be read out via the VME.

Figure 3 shows the block diagram of the sink functions.

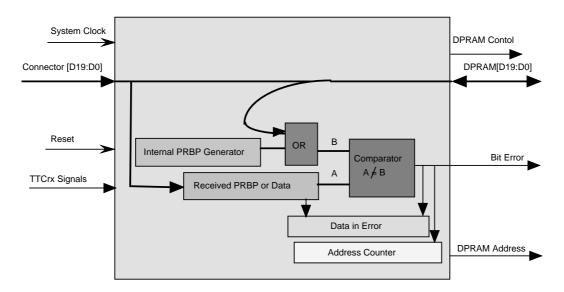


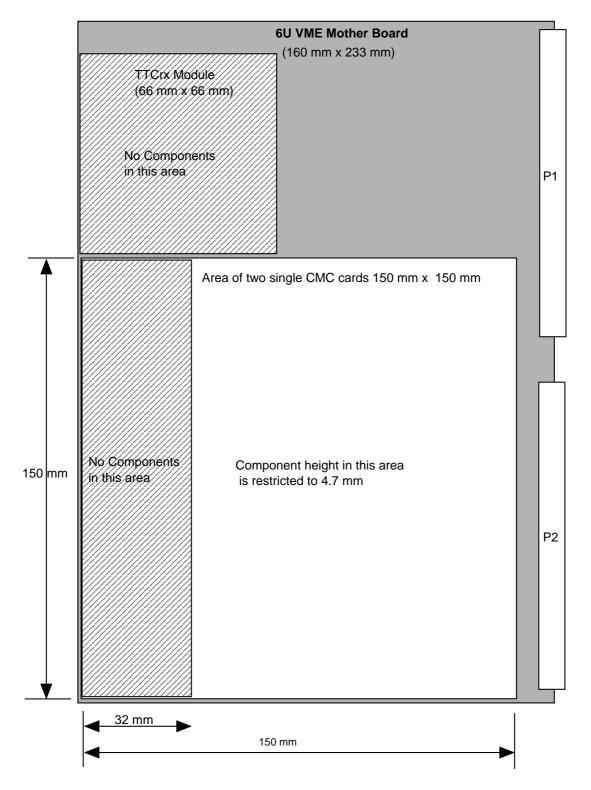
Figure 3. Block Diagram of the Sink FPGAs

3.2.1.3 S-Link FPGA

There will be two separate FPGAs to handle data from a destination S-link and the source S-link.

3.2.2 Dual port RAM

32K x 32 wide Dual port memory will be used for test data buffers. In the case of G-Link and LVDS serialiser/deserialiser daughter boards, only 20 bits out of the 32 will be used on each channel.


3.2.3 VME Logic

All VME related logic such as; address decoding, memory addressing, and any other controls and status registers required will be implemented on a programmable logic device (Control Logic)

3.2.4 TTC Module

A plug-in daughter module (CERN TTCrx module) will generate the TTC signals by using a TTCrx chip. When the TTC system is not available the appropriate signals (Clock, Start, etc.) will be received from an external source, such as the one used in the demonstrator system (TCM). For more details refer to the CMM draft specification.

3.2.5 Component Height Restrictions on the Mother Board

The component height restrictions and exclusion zones are shown in figure 4.

Figure 4. Mother Board Component Placement Restrictions (not to scale)

3.2.6 Signal Handling on the Mother Boards

The source modules will terminate the signals using series termination (Rs) for a 75 Ω track impedance. Since the same pins of the FPGA are used when in sink mode or in source mode, the series resister (Rs) at the FPGA end will be present in both modes.

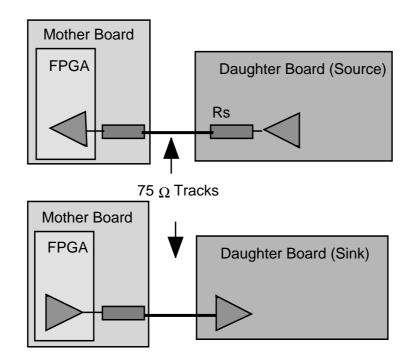


Figure 5. Source Termination

The following table indicates the minimum and maximum values of the signal through the CMC connectors. All signals are TTL compatible

Parameter	Symbol	Min	Тур	Max	Unit
Output Drive Low/High	I _{OL} /I _{OH}			24	mA
Output Low Voltage	V _{OL}			0.4	v
Output High Voltage	V _{OH}	2.4			V
Input Low Voltage	VII			0.8	V
Input High Voltage	V _{IH}	2.0		3.3	V
Clock	CLK	_	_	40	MHz

3.2.7 Front Panel Input and Outputs

3.2.7.1 Front Panel Inputs

Description	Logic	Connector
TTCin	Balanced LVDS	LEMO 00
40 MHz System Clock *	Balanced ECL	LEMO 00
Start *	Balanced ECL	LEMO 00
Stop Transmission #	Balanced LVDS	2 Pin Harwin 2pin

Notes: * Not required when the TTC is in use

Start is an active high signal, which will emulate the broadcast start from TTC (see 3.2.8.5.1)

Active high; for example BUSY from the ROD module

3.2.7.2 Front Panel Outputs

Description	Logic	Connector
Logical OR of Bit Errors	Balanced ECL	2 Pin Harwin 2pin

Note: space permitting, individual bit error signals will brought on to the front panel via an IDC connector.

3.2.7.3 Front Panel Monitoring (LEDs)

The LEDs will be located at the top of the front panel.

Description	Signal name	Colour
+5 Volts		Green
-5 Volts		Green
+3.3 Volts		Green
System clock is active	SYSCLK	Green
FPGAs Loaded	PromsDone+	Green
VME active	ModuleSel	Yellow
Bit Errors	Bit_Error	Red

* Fast signals will be stretched so that they will light the LEDs for long enough to be seen.

+ Logical AND of all the PromDone signals

3.2.7.4 Rear Panel Input and Outputs

1) VME J1 Connector

2) VME J2 Connector

3.2.7.5 Power Requirements

Voltage rail	Maximum. Current
+5V & +3.3V	9A
-5V	200 mA
+3.3V	7A

3.2.7.6 Ground Points

Ground points will be provided for scope probe grounding in exposed areas of the motherboard.

3.2.7.7 Test and Set-up Points

- 1. There will be logic analyser probe points on various data paths to aid in debugging the module.
- 2. JTAG boundary scan port

3.2.7.8 Configuring the Data FPGAs

The Data FPGAs can be configured in the following ways to give maximum flexibility for the module users.

On the Mother Board:

1. EEPROMs (equivalent to Xilinx XC1701L) will be socketed so that they can be programmed with the configuration data using a standalone device programmer.

2. ISP port (Xilinx exchequer) will be provided to down load configuration data from a PC for example.

3. VME port via a register will be provided, for downloading the FPGAs as well as the EEPROMs. The user must provide the software drivers.

On the Daughter Board:

1. EEPROMs (AT17LV010) must be socketed

- 2. If you require in-circuit programmability of the EEPROM then the daughter board designers must provide a relevant socket and software drivers.
- 3. The EEPROM can also be programmed in a similar manner to 3 above.

The Mother board will drive the DisMotherProm1 signal and control the way in which the FPGAs will be configured, therefore the daughter board must connect DisMotherProm2 pin to DisMotherProm1 pin.

3.2.8 Programming Model

3.2.8.1 Guidelines

These are to aid the software control of the module.

- 1. All registers can be read by the computer, hence there are no 'write only' registers.
 - 1.1 All Status Registers shall be Read-Only registers.
 - 1.2 All Control Registers shall be Read/Write registers.
 - 1.3 Reading back a register will return the last value written.
 - 1.4 Attempts to write to read-only registers or undefined portions of registers will result in the non-modifiable fields being left unchanged.
- 2. If the computer tries to read or write a value, which the DSS module itself is able to modify at the same time, the data integrity cannot be guaranteed. The only exception been the Control Register and the Status Register. Therefore it is recommended that before any software tries to read or write to any registers the status of the module should ascertained by reading the Status Register.
- 3. When the address space occupied by the DSS module is accessed, it will always respond with a handshake to avoid a bus error.
- 4. The power-up condition of all registers will be all zeros, unless otherwise stated.

3.2.8.2 Notation

The names of the registers and bit fields within them are written in *italic*. The names of the signal lines are <u>underlined italic</u>. Bit fields are labelled <u>Input to Card</u> and <u>Output from Card</u> rather than <u>Write</u> and <u>Read</u> to make it clear whether it is the card or the computer which is doing the writing.

In this document, a <u>byte</u> is always an 8-bit field, a <u>word</u> is always 16 bits and a <u>long-word</u> is always 32 bits.

Setting a bit field means writing a 1 to it, clearing it means writing a 0.

3.2.8.3 *Memory Map*

The DSS module is addressed using an A32/A24 address bus. It uses the 21 least significant bits (up to A20) of the A32 address bus, hence the address space of the DSS module is 21-bits. This corresponds to 2048 kilobytes per module. The most significant bits of the address bus can be pre-set by switches (accessible from the front panel) to allow the 2048 kilobyte memory space required to sit at any convenient 2048 kilobyte boundary within the four Giga byte A32 address space.

Byte Address	Regis ter type	Register Name	Size in bytes	Description
000000	RO	MotherID	4	Type, serial number & revision of mother board
000004	RW	MotherCR	4	Control Register
000008	RO	MotherSR	4	Status Register
00000C	RO	DaughterID	4	Type, serial number & revision of daughter board
000010	RW	DaughterCR	4	Control Register
000014	RO	DaughterSR	4	Status Register
000018	RW	Timing_Reg	4	Clock Phase adjustment
00001C	RW	OffsetReg	4	Offset Register
000020	RW	Pulse Register	4	Generates pulses
000024	RO	Bit-error Register	4	Bit errors
000028	RO	VME-Revision	4	VME Revision
00002C	RW	Program_Reg	4	VME 'ISP' programming
000030 00003C				Undefined
000040	RO	FPGA_Reg_A1	4	BCID Counter (Source) Error Counter (Sink)
000044	RO	FPGA_Reg_A2	4	BCID/Error Counter
000048	RO	FPGA_Reg_A3	4	BCID/Error Counter
00004C	RO	FPGA_Reg_A4	4	BCID/Error Counter
000050	RO	FPGA_Reg_A5	4	BCID/Error Counter
000054	RO	FPGA_Reg_A6	4	BCID/Error Counter
000058	RO	FPGA_Reg_A7	4	BCID/Error Counter
00005C	RO	FPGA_Reg_A8	4	BCID/Error Counter
000060	RW	SLINK_FIFO	4	FIFO (S-Link Destination)
000064	RW		4	Reserved
000068	RW	FPGA_Reg_B1	4	Pseudo Random Generator Seed (FPGA 1)
00006C	RW	FPGA_Reg_B2	4	Pseudo Random Generator Seed (FPGA 2)
000070	RW	FPGA_Reg_B3	4	Pseudo Random Generator Seed (FPGA 3)
000074	RW	FPGA_Reg_B4	4	Pseudo Random Generator Seed (FPGA 4)
000078	RW	FPGA_Reg_B5	4	Pseudo Random Generator Seed (FPGA 5)
00007C	RW	FPGA_Reg_B6	4	Pseudo Random Generator Seed (FPGA 6)
000080	RW	FPGA_Reg_B7	4	Pseudo Random Generator Seed (FPGA 7)
000084	RW	FPGA_Reg_B8	4	Pseudo Random Generator Seed (FPGA 8)

000088	RW	Slink_D_CR	4	Control Reg (S-Link
000088	IX VV	Sunk_D_CK	-	Destination)
00008C	RW	Slink_S_CR	4	Control Reg (S-Link
		Smm_S_err		Source)
000090	RW	FPGA_Reg_C1	4	Last Word in Error (Sink)
000094	RW	FPGA_Reg_C2	4	Last Word in Error (Sink)
000098	RW	FPGA_Reg_C3	4	Last Word in Error (Sink)
00009C	RW	FPGA_Reg_C4	4	Last Word in Error (Sink)
0000A0	RW	FPGA_Reg_C5	4	Last Word in Error (Sink)
0000A4	RW	FPGA_Reg_C6	4	Last Word in Error (Sink)
0000A8	RW	FPGA_Reg_C7	4	Last Word in Error (Sink)
0000AC	RW	FPGA_Reg_C8	4	Last Word in Error (Sink)
0000B0	RW		4	undefined
0000B0	RW	Slink_S_SR	4	Status Reg (S-Link
00000		Stink_5_SK		Source)
0000B8	RO	Address counter1	4	Address when the error
				occurred (Sink)
0000BC	RO	Address_counter2	4	Address when the error
				occurred (Sink)
0000C0	RO	Address_counter3	4	Address when the error
				occurred (Sink)
0000C4	RO	Address_counter4	4	Address when the error
				occurred (Sink)
0000C8	RO	Address_counter5	4	Address when the error
0000000				occurred (Sink)
0000CC	RO	Address_counter6	4	Address when the error
0000000	DO	A 11	4	occurred (Sink)
0000D0	RO	Address_counter7	4	Address when the error occurred (Sink)
0000D4	RO	Address counter8	4	Address when the error
0000004	KO	Address_countero	-	occurred (Sink)
0000D8	RO	Address_counter9	4	Address Counter (S-Link
000020				Destination)
0000DC	RO	Address_counter10	4	Address Counter (S-Link
				Source)
0000E0	RO	FPGA1_Rev	4	Revision register
0000E4	RO	FPGA2_Rev	4	Revision register
0000E8	RO	FPGA3_Rev	4	Revision register
0000EC	RO	FPGA4_Rev	4	Revision register
0000F0	RO	FPGA5_Rev	4	Revision register
0000F4	RO	FPGA6_Rev	4	Revision register
0000F8	RO	FPGA7_Rev	4	Revision register
0000FC	RO	FPGA8_Rev	4	Revision register
000100	RO	S-Link(D)-Revision	4	Revision register
000104	RO	S-Link(S)-Revision	4	Revision register
000108				Undefined
001FFF				

020000	RW	Data Buffer 1	128K	Daughter board 1
03FFFF			(32 K x 32)	DC_Data_A[19:0]
040000	RW	Data Buffer 2	128K	Daughter board 1
05FFFF			(32 K x 32)	DC_Data_B[19:0]
060000	RW	Data Buffer 3	128K	Daughter board 1
07FFFF			(32 K x 32)	DC_Data_C[19:0]
080000	RW	Data Buffer 4	128K	Daughter board 1
09FFFF			(32 K x 32)	DC_Data_D[19:0]
0A0000	RW	Data Buffer 5	128K	Daughter board 2
0BFFFF			(32 K x 32)	DC_Data_A[19:0]
0C0000	RW	Data Buffer 6	128K	Daughter board 2
0DFFFF			(32 K x 32)	DC_Data_B[19:0]
0E0000	RW	Data Buffer 7	128K	Daughter board 2
0FFFFF			(32 K x 32)	DC_Data_C[19:0]
100000	RW	Data Buffer 8	128K	Daughter board 2
11FFFF			(32 K x 32)	DC_Data_D[19:0]
120000	RW	Data Buffer 9	128K	Data Buffer 9 S-Link
13FFFF			(32 K x 32)	Source
140000	RW	Data Buffer 10	128K	Data Buffer 10 S-Link
15FFFF			(32 K x 32)	Destination
160000				Undefined
1FFFFF				

 \underline{RO} means that the computer can only read the value of this register, writing has no effect either to the value or the state of the module.

 \underline{RW} means that the computer can affect the state of the module by writing to this register.

All memory on the board is directly mapped into VME address space so as to be conveniently accessible by the computer.

AM code	
39	Standard (A24) non-privileged data access
3D	Standard (A24) supervisory data access
09	Extended (A32) non-privileged data access
0D	Extended (A32) supervisory data access

3.2.8.4 Mother ID Register

Register Bits	Assignment	Description
0-15	RAL Number	Same for each module type, number
	(2414)	recorded in RAL register
16-23	Module Serial	an unique number assigned to each
	number	module
24-27	Issue	Issue number
28 - 31	-	Unused

The DSS module identification register is used to uniquely identify the module.

3.2.8.5 Mother Control Register

All bit fields are inputs to board. Power-up condition will initially set all control register bits to 0 unless otherwise stated.

Bit	Descriptive Name	Signal name	
0 (LSB)	Test Mode 0	<u>Mode-0</u>	
1	Test Mode 1	<u>Mode-1</u>	
2	Test Mode 2	<u>Mode-2</u>	
3	Test Mode 3	<u>Mode-3</u>	Reserved
4	Start Stop Test	<u>StartTest</u>	
5	Software Xoff	<u>SXoff</u>	
6	Cascade	FPGA CASCADE	
7	Enable Readout	FPGA_EN_ROUT	

3.2.8.5.1 Mode Bits

Mode bit 2	Mode bit 1	Mode bit 0	Descriptive Name
0	0	0	No Test
0	0	1	Pseudo Random Pattern -32K
0	1	0	Memory to Memory Test (Bypass)- 32K
0	1	1	Read Back and Compare Test - 32 K
1	0	1	Pseudo Random Pattern Forever
1	1	0	Bypass Forever
1	1	1	Read Back and Compare Test Forever
1	0	0	S-Link Test

3.2.8.5.1.1 Pseudo Random Pattern

When selected, pseudo-random patterns are generated internally as the data source, and automatically checked.

3.2.8.5.1.2 Bypass Readout Logic

When selected the data source is the DPRAM's, the transmitted data is written into the Sink DPRAM's

Read back test

The same data is written into the source and sink DPRAM's, and automatically checked.

3.2.8.5.2 Start/Stop Test

Bit 4

When a 1 is written to this bit it will start the test sequence.

0	Stops the test sequence
1	Starts the test sequence

This bit will be combined (OR) with a broadcast start signal which will be received from the TTC system and decoded by the TTCrx chip (Brcst[7:6]).

Brcst[7]	Brcst[6]	Function
0	0	stop
0	1	start

3.2.8.5.3 Software Xoff (specific for the ROD)

Bit 5

- 0 when this bit is set to one Xoff will be generated in software
- 1 when this bit is set to zero only the hardware Xoff is active

3.2.8.5.4 Cascade (specific for testing the ROD function on the Serialising ASIC) Bit 6

- 0 when this bit is set to zero, only data from one "serial ASIC" will be transmitted.
- 1 when this bit is set to one, data from two "serial ASIC"s will be cascaded and transmitted

3.2.8.5.5 Enable Read out (specific for ROD tests)

BIT 7

- 0 disables readout.
- 1 enables readout

3.2.8.6 Mother Status Register

This is a read-only register.

Bit	Descriptive Name	Signal name	
0 (LSB)	Data Buffer 1 Full	<u>DB1FF</u>	
1	Data Buffer 2 Full	DB2FF	
2	Data Buffer 3 Full	DB3FF	
3	Data Buffer 4 Full	DB4FF	
4	Data Buffer 5 Full	DB5FF	
5	Data Buffer 6 Full	DB6FF	
6	Data Buffer 7 Full	DB7FF	
7	Data Buffer 8 Full	DB8FF	
8	Data Buffer 9 Full	DB9FF	
9	Data Buffer 10 Full	DB10FF	
10	FPGA 1 Loaded	Prom1Done	
11	FPGA 2 Loaded	Prom2Done	
12	FPGA 3 Loaded	Prom3Done	
13	FPGA 4 Loaded	Prom4Done	
14	FPGA 5 Loaded	Prom5Done	
15	FPGA 6 Loaded	<u>Prom6Done</u>	
16	FPGA 7 Loaded	Prom7Done	
17	FPGA 8 Loaded	Prom8Done	
18	FPGA 9 Loaded	Prom9Done	
19	FPGA 10 Loaded	Prom10Done	
20	Module Status	<u>Start/Stop</u>	
21	TTC Status	BroadcastStart	
22	TTC Ready	<u>TTCReady</u>	
23			
24-31			Not used

3.2.8.6.1Data Buffer Full

Bit 0 - 9	
0	Data buffer not full
1	Data buffer full

3.2.8.6.2

Bits 10 -19	
0	FPGA '

0FPGA 'n' not loaded1FPGA 'n' successfully loaded

3.2.8.6.3 Bit 20 0 1	Testing stopped Testing started
3.2.8.6.4 Bit 21 0 1	Testing stopped via TTC broadcast Testing started via TTC broadcast
3.2.8.6.3 Bit 22 0 1	TTCrx is not ready TTCrx is ready
3.2.8.6.4 Bit 23 - 31	Not used

3.2.8.7 Daughter Card Serial number

Bits 0-15 is reserved for the daughter card 1 and bits (16-31) is reserved for the daughter card 2

Register Bits	Assignment	Description
0-4 (16-20)	Serial number	an unique number assigned to each module
5-7 (21-23	zero	Set to zero
8-12 (24-28)	zero	Set to zero
13-15 (28-31)	zero	Set to zero

3.2.8.8 Daughter Control Register

Bits 0 to 15 are reserved for daughter board 1. Bits 16 to 31 are reserved for daughter board 2 and has the same bit definition as for bits 0 to 15 (3.2.8.7.1)

3.2.8.8.1 LVDSSYNC (Controls G-Link Rx Equiliser) Bits 0-3 (16-19)

- 0 Normal running
- 1 PLL synchronisation mode *

* LVDS (SYNC) hold these bits high for a minimum of 1024, 40 MHz clock cycles (one bit per pair of chips).

3.2.8.8.2 DIV0

Bits 4-(20)

- 0 set 0 on DIV0 of G-links
- 1 set 1 on DIV0 of G-links

3.2.3.8.3 Bits 5-7 (21-23) not used

3.2.8.8.4 LVDS PWDN

Bit 8 (24)

- 0 writing a 0 takes the signal low
- 1 writing a 1 takes the signal high
 - (Hold this signal low for 1 micro second to initialise the LVDS chips)

3.2.8.8.5

Bits 9 (25) (REN/DEN)

- 0 Tri-states the outputs on the LVDS chips
- 1 Data enabled

3.2.8.8.6

Bits 10-15 (26-31)

These bits are not defined

3.2.8.9 Daughter Status register

Bits 0 to 15 are reserved for daughter board 1. Bits 16 to 31 are reserved for daughter board 2 and has the same bit definition as for bits 0 to 15 (3.2.8.8.1)

3.2.8.9.1 Links Locked

Bits 0 - 7 (16 - 23)

- 0 Links locked
- 1 Links not locked

* LVDS uses eight bits and G-links uses the first four bits per daughter board

3.2.8.9.2

Bits 8-15 (24-31) Not used

3.2.8.10 Timing_Reg

Bits 0 - 4	Adjust the phase of the 40 MHz clock, clock40Des 1 in 1 ns steps.
Bits 5 - 9	Adjust the phase of the 40 MHz clock, clock40Des 2 in 1 ns steps
Bits 10 - 15	Not defined.
Bits 16 - 17	Two bits for FPGAs 1-4, for one of three clock selection
Bits 18 - 19	Two bits for FPGAs 5-8, for one of three clock selection
Bits 20 - 21	Two bits for FPGA (S), for one of three clock selection.
Bits 22 - 23	Not used.
Bits 24 - 31	Not used

Note: bits 0-9 are only used with a clock source other than the TTC.

See Appendix A for timing Scheme

3.2.8.11 Offset Register

Bits 0 - 6

The function of this register is to provide a latency offset to pick out the correct data from the dual port memory within the FPGAs which implements the Serialiser ASIC logic to test the ROD module

3.2.8.12 Pulse Register

Bit	Descriptive Name	Signal name	
0 (LSB)	FPGA Reset	<u>GLReset</u>	Pulse (200ns)
1	TTC Reset	<u>TTCReset</u>	Pulse (200ns)
2	Reset daughter card 1	DC1-RESET	Pulse (200ns)
3	Reset daughter card 2	DC2-RESET	Pulse (200ns)
4	Reset Address Counters	<u>RS_Count</u>	Pulse (200ns)
5	Reset S-Link(D) Counter	<u>RS-S-Count</u>	Pulse (200ns)

3.2.8.12.1 Global Reset

Bit 0

When a 1 is written to this bit, a single pulse will reset the DSS module to a known power-up state. *Global Reset* is always read 0, and writing 0 has no effect.

The same effect can be produced using the VME <u>System Reset*</u>.

- 0 Read value, no effect on writing
- 1 Resets the DSS module to the initial power-up state

3.2.8.12.2 TTC Reset Bit 1

When a 1 is written to this bit, a single pulse will reset the TTCrx chip to power-up state. *TTC reset* is always read 0, and writing 0 has no effect.

0	Read value, no effect on writing
1	Resets the TTCrx chip

3.2.8.12.3 Reset Daughter Card 1,2

Bit 2, 3

When a 1 is written to this bit, a single pulse will reset the G-Link chips to power-up state. *G-Link reset* is always read 0, and writing 0 has no effect.

0	Read value, no effect on writing
1	Resets the G-Link chips

3.2.8.13 Bit Error register (FIFO Buffer Empty flag register)

Bits 0-7

Indicates the bit error flag from the data FPGAs when the FPGAs are used in the destination. When the data FPGAs are used as source FPGAs to test the "Serialising ASIC" read-out function these bits will indicate FIFO buffer empty flags. Bits 0 to 7 corresponding to FPGA 1 to 8.

3.2.8.14 VME Revision

Specifies the current version loaded into the VME CPLD.

Bits 31-24	Version (Starts at 01)
Bits 23-16	Function code.
Bits 15-0	"2414" for DSS.

3.2.8.15 Program_Reg

This register is used to program the FPGAs as well the EEPROMs via the VME

Bit 0	Serial data to FPGAs and EEPROMs (Din)
Bits 15-1	Reserved (read back as zero)
Bit 16	Sel-1
Bit 17	Sel-2
Bit 18	Sel-3
Bit 19	Sel-4
Bit 20	Writing a one will generate a clock for the FPGA/EEPROM
Bit 21	Reset
Bit 22	Program
Bit 23	Monitor INIT signal
Bit 24	Monitor done signal
Bits 31-25	Reserved (read back as zero)

The Sel lines will select one of the devices for programming by selecting Ser_En or CE line of the appropriate FPGAs or the EEPROMs.

Sel[3:0]	Program Block
0001	FPGA 1-4 via Xchecker
0010	FPGA 5-8 via Xchecker
0011	SLINK Source FPGA via Xchecker
0100	SLINK Destination FPGA via Xchecker
0101	FPGA 1-4 via VME
0110	FPGA 5-8 via VME
0111	SLINK Source FPGA via VME
1000	SLINK Destination FPGA via VME
1001	EEPROM on Daughter card 1
1010	EEPROM on Daughter card 2

3.2.8.16 FPGA_Reg_A

Bits 11-0

Bunch count number available on each of the FPGAs when it is implementing the serialiser ASIC logic (Source FPGA).

Bits 15-0 (Glink) Bits 31-16, 15-0 (LVDS) Bit error counter (Sink FPGA)

3.2.8.17 FPGA_Reg_B

Bits 19-0 (Glink) Bits 25-16, 9-0 (LVDS)

Pseudo Seed register for Pseudo Random data generator.

3.2.8.18 FPGA_Reg_C

Bits 19-0 (Glink) Bits 25-16, 9-0 (LVDS)

Last word in Error. (Sink only)

3.2.8.19 Address Counters

Bits 31-0

Indicates the address location of the dual-port RAMs (Source) Address where the last error occurred. (Sink)

3.2.8.20 FPGA Revision Registers

- Bits 31-24 Revision number (Starts at 01)
- Bits 23-16 Function code.
- **Bits 15-0** "2414" (used with the DSS motherboard, therefore this should match with the DSS mother ID).

3.2.8.20.1 Function Codes (Bits 23-16)

Code (Binary)	PLD function
"00010000"	GLINK SOURCE
"00010001"	GLINK SINK
"00010010"	LVDS SOURCE
"00010011"	LVDS SINK
"00100000"	VME TYPE
"00010100"	SLINK SOURCE
"00010101"	SLINK DESTINATION

3.2.8.21 Registers for S-Link

3.2.8.21.1 S-Link Source Control Register (Slink_S_CR)

Bit 4 UTEST

3.2.8.21.2 S-Link Source Status Register (Slink_S_SR)

Bits 3-0 LRL

3.2.8.21.3 S-Link Destination FIFO (Slink_FIFO)

Bits 15-0 copies the address of the dual-port memory (S-Link associated) when a S-Link control word is received. Hence this FIFO will indicate the addresses of the beginning of a fragment (BOF00000Hex) and end of fragment (EOF00000Hex) of a S-Link frame written on to the dual-port RAM via S-Link.

Bit 16 status of LDERR.

Bit 17 will be '1' when you read the last word from the FIFO.

3.2.8.21.4 S-Link Destination Control Register (Slink_D_CR)

Bits 3-0	URL
Bit 4	UTDO

3.3 DSS Daughter Boards.

As shown in figure 6, a selection of daughter boards such as G-link transmitter and receivers, LVDS serialiser and deserialiser and parallel LVDS are possible. Many others are also possible to satisfy future test requirements of ASICs, MCMs and modules.

The motherboard can be configured by the daughter modules to be either all source modules or all sink modules or half-and-half, except for the S-Link cards. Since the S-Link cards are hard coded with a key pin, only one S-Link source and one S-Link destination card is allowed on the motherboard.

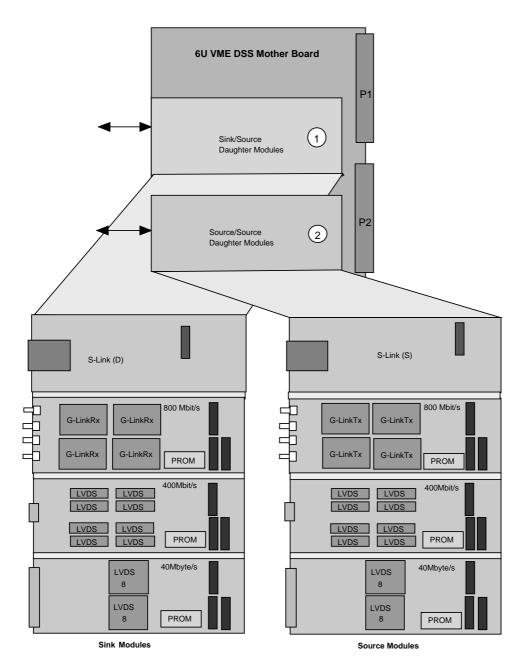
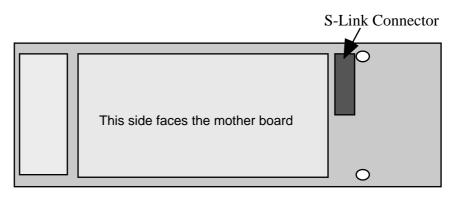



Figure 6. DSS Daughter Card Options

When a daughter board is plugged onto the mother board, the mother board PROM handling the daughter card data, will be automatically disabled and the PROM on the daughter board will automatically configure the mother board to be source or sink module. Separate FPGAs will handle the data from the S-Link daughter cards

3.3.1 Daughter Board Standard

The daughter board designs must comply with the IEEE P1386/Draft 2.0, 4 April-1995, standard for a Common Mezzanine Card (CMC) family. The connector definitions and the physical description of the boards are given below. Figure 7 shows the generic daughter boards and the connector positions.

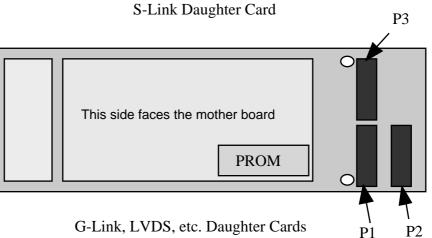


Figure 7 . Daughter board view facing the mother board

The connectors used in these modules will be: (10 mm stand-off)

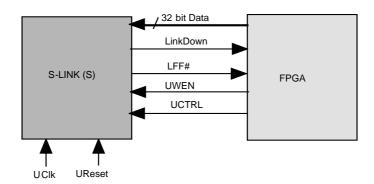
- 1. Plug (P) (Molex 53483-0649) on the daughter boards
- 2. Socket (J) (Molex 52763-0649) on the motherboards

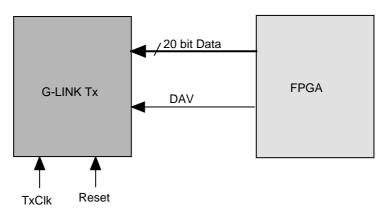
3.3.2 Connector Definitions.

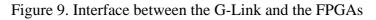
3.3.2.1 S-Link Source	e Card (LSC)	Connector
-----------------------	--------------	-----------

Pin	Signal	Signal	Pin
1	LRL3	LRL2	2
3	VCC	LRL1	4
5	VCC	LRL0	6
7	LDOWN#	GROUND	8
9	GROUND	LFF#	10
11	UCLK	GROUND	12
13	GROUND	UWEN#	14
15	URESET#	GROUND	16
17	UDW1	UTEST#	18
19	UCTRL#	UDW0	20
21	UD31	VCC	22
23	GROUND	UD30	24
25	UD29	UD28	26
27	UD27	GROUND	28
29	UD26	UD25	30
31	GROUND	UD24	32
33	UD23	UD22	34
35	UD21	GROUND	36
37	UD20	UD19	38
39	VCC	UD18	40
41	UD17	UD16	42
43	UD15	GROUND	44
45	UD14	UD13	46
47	GROUND	UD12	48
49	UD11	UD10	50
51	UD9	VCC	52
53	UD8	UD7	54
55	GROUND	UD6	56
57	UD5	UD4	58
59	UD3	GROUND	60
61	UD2	UD1	62
63	VCC	UD0	64

Table 1. S-Link Source Card pin-out




Figure 8. Interface between the S-Link Source and the FPGA


Pin	Signal	Signal	Pin
1	GLinkRESET* (C)	-12V	2
3	GROUND	PLL LOCKED-A (S)	4
5	DBID-1	PLL LOCKED-B (S)	6
7	Busmode1#	+5V	8
9	DBID-2	PLL LOCKED-C (S)	10
11	GROUND	PLL LOCKED-D (S)	12
13		GROUND	14
15	GROUND	GLinkDAVA* (F)	16
17	DBID-3	+5V	18
19	V(I/O)-1	GLinkDAVB* (F)	20
21		GLinkDAVC* (F)	22
23		GROUND	24
25	GROUND	GLinkDAVD* (F)	26
27		DBID-4	28
29		+5V	30
31	V(I/O)-1	DBID-5	32
33	DC DATA D0	GROUND	34
35	GROUND	DC DATA D1	36
37	DC DATA D2	+5V	38
39	GROUND	DC DATA D3	40
41	DC DATA D4	DC DATA D5	42
43	DC DATA D6	GROUND	44
45	V(I/O)-1	DC DATA D7	46
47	DC DATA D8	DC DATA D9	48
49	DC DATA D10	+5V	50
51	GROUND	DC DATA D11	52
53	DC DATA D12	DC DATA D13	54
55	DC DATA D14	GROUND	56
57	V(I/O)-1	DC DATA D15	58
59	DC DATA D16	DC DATA D17	60
61	DC DATA D18	+5V	62
63	GROUND	DC DATA D19	64

3.3.2.2. G-Link Source Board Connector P1

Table 2. G-Link Source Board Connector P1 pin-out

- (S) Status Register
- (F) Data FPGA
- (C) Control Register

Pin	Signal	Signal	Pin
1	+12V	DisMotherProm1	2
3		DisMotherProm2	4
5	PromDONE	GROUND	6
7	GROUND	PromDATA	8
9	PromINIT	DIV0 (C)	10
11	Busmode2#	+3.3V	12
13		Busmode3#	14
15	+3.3V	Busmode4#	16
17		GROUND	18
19	GLinkStrbA	GLinkStrbB	20
21	GROUND		22
23	GLinkStrbC	+3.3V	24
25		Ser En (C)	26
27	+3.3V	GLinkStrbD	28
29	DC DATA CO	GROUND	30
31	DC DATA C2	Mod20Sel (C)	32
33	GROUND	DC DATA C1	34
35	PromCCLK	+3.3V	36
37	GROUND	DC DATA C3	38
39	DC DATA C4	GROUND	40
41	+3.3V	DC DATA C5	42
43	DC DATA C6	GROUND	44
45	DC DATA C8	DC DATA C7	46
47	GROUND	DC DATA C9	48
49	DC DATA C10	+3.3V	50
51	DC DATA C12	DC DATA C11	52
53	+3.3V	DC DATA C13	54
55	DC DATA C14	GROUND	56
57	DC DATA C16	DC DATA C15	58
59	GROUND	DC DATA C17	60
61	DC DATA C18	+3.3V	62
63	GROUND	DC DATA C19	64

3.3.2.3. G-Link Source Board Connector P2

Table 3. G-Link Source Board Connector P2 pin-out

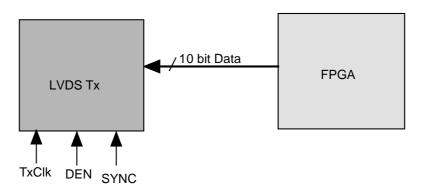
- (S) Status Register
- (F) Data FPGA
- (C) Control Register
- Note 1. Busmode [4:2]# signals are driven by the motherboard, Busmode 1# is returned by the daughter card to indicate presence of the card. These signals are not used in the G-Link and LVDS daughter card designs.
 2. User Defined pins are spare pins for future use.

3.3.2.4.	G-Link	Source	Board	Connector	P3
----------	---------------	--------	-------	-----------	-----------

Pin	Signal	Signal	Pin
1	DC DATA A0	GROUND	2
3	GROUND	DC DATA A1	4
5	DC DATA A2	DC DATA A3	6
7	DC DATA A4	GROUND	8
9	V(I/O)-2	DC DATA A5	10
11	DC DATA A6	DC DATA A7	12
13	DC DATA A8	GROUND	14
15	GROUND	DC DATA A9	16
17	DC DATA A10	DC DATA A11	18
19	DC DATA A12	GROUND	20
21	V(I/O)-2	DC DATA A13	22
23	DC DATA A14	DC DATA A15	24
25	DC DATA A16	GROUND	26
27	GROUND	DC DATA A17	28
29	DC DATA A18	DC DATA A19	30
31	DC DATA B0	GROUND	32
33	GROUND	DC DATA B1	34
35	DC DATA B2	DC DATA B3	36
37	DC DATA B4	GROUND	38
39	V(I/O)-2	DC DATA B5	40
41	DC DATA B6	DC DATA B7	42
43	DC DATA B8	GROUND	44
45	GROUND	DC DATA B9	46
47	DC DATA B10	DC DATA B11	48
49	DC DATA B12	GROUND	50
51	GROUND	DC DATA B13	52
53	DC DATA B14	DC DATA B15	54
55	DC DATA B16	GROUND	56
57	V(I/O)-2	DC DATA B17	58
59	DC DATA B18	DC DATA B19	60
61	Spare (C)	GROUND	62
63	GROUND		64

Table 4. G-Link Source Board Connector P3 pin-out

Note: The V(I/O) pins on P1 and P3 should be tracked as shown below for selecting additional voltage pins if necessary


Pin	Signal	Signal	Pin
1	DC RESET	-12V	2
3	GROUND		4
5	DBID-1		6
7	Busmode1#	+5V	8
9	DBID-2		10
11	GROUND		12
13		GROUND	14
15	GROUND		16
17	DBID-3	+5V	18
19	V(I/O)-1		20
21			22
23		GROUND	24
25	GROUND		26
27		DBID-4	28
29		+5V	30
31	V(I/O)-1	DBID-5	32
33	DC DATA D0	GROUND	34
35	GROUND	DC DATA D1	36
37	DC DATA D2	+5V	38
39	GROUND	DC DATA D3	40
41	DC DATA D4	DC DATA D5	42
43	DC DATA D6	GROUND	44
45	V(I/O)-1	DC DATA D7	46
47	DC DATA D8	DC DATA D9	48
49	DC DATA D10	+5V	50
51	GROUND	DC DATA D11	52
53	DC DATA D12	DC DATA D13	54
55	DC DATA D14	GROUND	56
57	V(I/O)-1	DC DATA D15	58
59	DC DATA D16	DC DATA D17	60
61	DC DATA D18	+5V	62
63	GROUND	DC DATA D19	64

3.3.2.5. LVDS (400 Mbit/s) Source Board Connector P1

Table 5. LVDS (400Mbit/s) Source Board Connector P1 pin-out

(S) - Status Register (F) - Data FPGA

(C) - Control Register

Pin	Signal	Signal	Pin
1	+12V	DisMotherProm1	2
3	LVDS-PWDN* (C)	DisMotherProm2	4
5	PromDONE	GROUND	6
7	GROUND	PromDATA	8
9	PromINIT		10
11	Busmode2#	+3.3V	12
13	LVDSSYNCA (C)	Busmode3#	14
15	+3.3V	Busmode4#	16
17	LVDSSYNCB (C)	GROUND	18
19	TCLKA	TCLKB	20
21	GROUND	LVDSSYNCC (C)	22
23	TCLKC	+3.3V	24
25	LVDSSYNCD (C)	Ser En	26
27	+3.3V	TCLKD	28
29	DC DATA CO	GROUND	30
31	DC DATA C2		32
33	GROUND	DC DATA C1	34
35	PromCCLK	+3.3V	36
37	GROUND	DC DATA C3	38
39	DC DATA C4	GROUND	40
41	+3.3V	DC DATA C5	42
43	DC DATA C6	GROUND	44
45	DC DATA C8	DC DATA C7	46
47	GROUND	DC DATA C9	48
49	DC DATA C10	+3.3V	50
51	DC DATA C12	DC DATA C11	52
53	+3.3V	DC DATA C13	54
55	DC DATA C14	GROUND	56
57	DC DATA C16	DC DATA C15	58
59	GROUND	DC DATA C17	60
61	DC DATA C18	+3.3V	62
63	GROUND	DC DATA C19	64

3.3.2.6. LVDS (400 Mbit/s) Source Board Connector P2

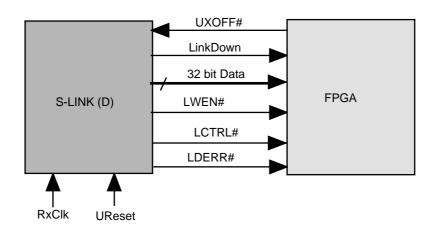
Table 6. LVDS (400Mbit/s) Source Board Connector P2 pin-out

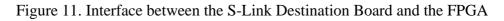
- (S) -Status Register
- (F) Data FPGA
- (C) Control Register
- Note 1. Busmode [4:2]# signals are driven by the motherboard, Busmode 1# is returned by the daughter card to indicate presence of the card. These signals are not used in the G-Link and LVDS daughter card designs.
 2. User Defined pins are spare pins for future use.

Pin	Signal	Signal	Pin
1	DC DATA A0	GROUND	2
3	GROUND	DC DATA A1	4
5	DC DATA A2	DC DATA A3	6
7	DC DATA A4	GROUND	8
9	V(I/O)-2	DC DATA A5	10
11	DC DATA A6	DC DATA A7	12
13	DC DATA A8	GROUND	14
15	GROUND	DC DATA A9	16
17	DC DATA A10	DC DATA A11	18
19	DC DATA A12	GROUND	20
21	V(I/O)-2	DC DATA A13	22
23	DC DATA A14	DC DATA A15	24
25	DC DATA A16	GROUND	26
27	GROUND	DC DATA A17	28
29	DC DATA A18	DC DATA A19	30
31	DC DATA B0	GROUND	32
33	GROUND	DC DATA B1	34
35	DC DATA B2	DC DATA B3	36
37	DC DATA B4	GROUND	38
39	V(I/O)-2	DC DATA B5	40
41	DC DATA B6	DC DATA B7	42
43	DC DATA B8	GROUND	44
45	GROUND	DC DATA B9	46
47	DC DATA B10	DC DATA B11	48
49	DC DATA B12	GROUND	50
51	GROUND	DC DATA B13	52
53	DC DATA B14	DC DATA B15	54
55	DC DATA B16	GROUND	56
57	V(I/O)-2	DC DATA B17	58
59	DC DATA B18	DC DATA B19	60
61	Spare (C)	GROUND	62
63	GROUND	LVDS-DEN	64

3.3.2.7 LVDS (400 Mbit/s) Source Board Connector P3

Table 7. LVDS (400Mbit/s) Source Board Connector P3 pin-out

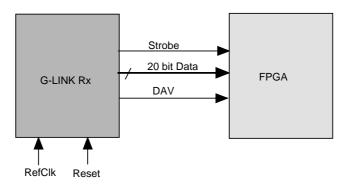

The data bits are defined as 0 to 19 and the corresponding controls are defined as: L for bits 0 - 9 and H for bits 10 - 19.


Note: The V(I/O) pins on P1 and P3 should be tracked as shown below for selecting additional voltage pins if necessary

Pin	Signal	Signal	Pin
1	URL3	URL2	2
3	VCC	URL1	4
5	LDERR#	URL0	6
7	LDOWN#	GROUND	8
9	GROUND	UXOFF#	10
11	LCLK	GROUND	12
13	GROUND	LWEN#	14
15	URESET#	GROUND	16
17	UDW1	UTD0#	18
19	LCTRL#	UDW0	20
21	LD31	VCC	22
23	GROUND	LD30	24
25	LD29	LD28	26
27	LD27	GROUND	28
29	LD26	LD25	30
31	GROUND	LD24	32
33	LD23	LD22	34
35	LD21	GROUND	36
37	LD20	LD19	38
39	VCC	LD18	40
41	LD17	LD16	42
43	LD15	GROUND	44
45	LD14	LD13	46
47	GROUND	LD12	48
49	LD11	LD10	50
51	LD9	VCC	52
53	LD8	LD7	54
55	GROUND	LD6	56
57	LD5	LD4	58
59	LD3	GROUND	60
61	LD2	LD1	62
63	VCC	LD0	64

3.3.2.8 S-Link Destination Board (LDC)

Table 8. S-Link Destination Board pin-out



Pin	Signal	Signal	Pin
1	GLinkRESET* (C)	-12V	2
3	GROUND	GLinkRdyA* (S)	4
5	DBID-1	GLinkRdyB* (S)	6
7	Busmode1#	+5V	8
9	DBID-2	GLinkRdyC* (S)	10
11	GROUND	GLinkRdyD* (S)	12
13	GLinkRefCLK	GROUND	14
15	GROUND	GLinkDAVA* (F)	16
17	DBID-3	+5V	18
19	V(I/O)-1	GLinkDAVB* (F)	20
21	GLinkErrA	GLinkDAVC* (F)	22
23	GLinkErrB	GROUND	24
25	GROUND	GLinkDAVD* (F)	26
27	GLinkErrC	DBID-4	28
29	GLinkErrD	+5V	30
31	V(I/O)-1	DBID-5	32
33	DC DATA D0	GROUND	34
35	GROUND	DC DATA D1	36
37	DC DATA D2	+5V	38
39	GROUND	DC DATA D3	40
41	DC DATA D4	DC DATA D5	42
43	DC DATA D6	GROUND	44
45	V(I/O)-1	DC DATA D7	46
47	DC DATA D8	DC DATA D9	48
49	DC DATA D10	+5V	50
51	GROUND	DC DATA D11	52
53	DC DATA D12	DC DATA D13	54
55	DC DATA D14	GROUND	56
57	V(I/O)-1	DC DATA D15	58
59	DC DATA D16	DC DATA D17	60
61	DC DATA D18	+5V	62
63	GROUND	DC DATA D19	64

3.3.2.9 G-Link Destination Board Connector P1

Table 9. G-Link Destination Board Connector P1 pin-out

- (S) Status Register
- (F) Data FPGA
- (C) Control Register

Pin	Signal	Signal	Pin
1	+12V	DisMotherProm1	2
3		DisMotherProm2	4
5	PromDONE	GROUND	6
7	GROUND	PromDATA	8
9	PromINIT	DIV0(C)	10
11	Busmode2#	+3.3V	12
13	EqA(C)	Busmode3#	14
15	+3.3V	Busmode4#	16
17	EqB(C)	GROUND	18
19	GLinkStrbA (F)	GLinkStrbB (F)	20
21	GROUND	EqC(C)	22
23	GLinkStrbC (F)	+3.3V	24
25	EqD(C)	Ser En	26
27	+3.3V	GLinkStrbD (F)	28
29	DC DATA CO	GROUND	30
31	DC DATA C2	Mod20Sel (C)	32
33	GROUND	DC DATA C1	34
35	PromCCLK	+3.3V	36
37	GROUND	DC DATA C3	38
39	DC DATA C4	GROUND	40
41	+3.3V	DC DATA C5	42
43	DC DATA C6	GROUND	44
45	DC DATA C8	DC DATA C7	46
47	GROUND	DC DATA C9	48
49	DC DATA C10	+3.3V	50
51	DC DATA C12	DC DATA C11	52
53	+3.3V	DC DATA C13	54
55	DC DATA C14	GROUND	56
57	DC DATA C16	DC DATA C15	58
59	GROUND	DC DATA C17	60
61	DC DATA C18	+3.3V	62
63	GROUND	DC DATA C19	64

3.3.2.10 G-Link Destination Board Connector P2

Table 10. G-Link Destination Board Connector P2 pin-out

- (S) Status Register
- (F) Data FPGA
- (C) Control Register
- Note 1. Busmode [4:2]# signals are driven by the motherboard, Busmode 1# is returned by the daughter card to indicate presence of the card. These signals are not used in the G-Link and LVDS daughter card designs.
 2. User Defined pins are spare pins for future use.

Pin	Signal	Signal	Pin
1	DC DATA A0	GROUND	2
3	GROUND	DC DATA A1	4
5	DC DATA A2	DC DATA A3	6
7	DC DATA A4	GROUND	8
9	V(I/O)-2	DC DATA A5	10
11	DC DATA A6	DC DATA A7	12
13	DC DATA A8	GROUND	14
15	GROUND	DC DATA A9	16
17	DC DATA A10	DC DATA A11	18
19	DC DATA A12	GROUND	20
21	V(I/O)-2	DC DATA A13	22
23	DC DATA A14	DC DATA A15	24
25	DC DATA A16	GROUND	26
27	GROUND	DC DATA A17	28
29	DC DATA A18	DC DATA A19	30
31	DC DATA B0	GROUND	32
33	GROUND	DC DATA B1	34
35	DC DATA B2	DC DATA B3	36
37	DC DATA B4	GROUND	38
39	V(I/O)-2	DC DATA B5	40
41	DC DATA B6	DC DATA B7	42
43	DC DATA B8	GROUND	44
45	GROUND	DC DATA B9	46
47	DC DATA B10	DC DATA B11	48
49	DC DATA B12	GROUND	50
51	GROUND	DC DATA B13	52
53	DC DATA B14	DC DATA B15	54
55	DC DATA B16	GROUND	56
57	V(I/O)-2	DC DATA B17	58
59	DC DATA B18	DC DATA B19	60
61	Spare (C)	GROUND	62
63	GROUND		64

3.3.2.11 G-Link Destination Board Connector P3

Table 11. G-Link Destination Board Connector P3 pin-out


Note: The V(I/O) pins on P1 and P3 should be tracked as shown below for selecting additional voltage pins if necessary

Pin	Signal	Signal	Pin
1	DC Reset	-12V	2
3	GROUND	LVDSLock*AL (S)	4
5	DBID-1	LVDSLock*BL (S)	6
7	Busmode1#	+5V	8
9	DBID-2	LVDSLock*CL (S)	10
11	GROUND	LVDSLock*DL (S)	12
13	LVDSRefCLK	GROUND	14
15	GROUND	RCLKAH (F)	16
17	DBID-3	+5V	18
19	V(I/O)-1	RCLKBH (F)	20
21	LVDSLock*AH (S)	RCLKCH (F)	22
23	LVDSLock *BH (S)	GROUND	24
25	GROUND	RCLKDH (F)	26
27	LVDSLock *CH (S)	DBID-4	28
29	LVDSLock *DH (S)	+5V	30
31	V(I/O)-1	DBID-5	32
33	DC DATA D0	GROUND	34
35	GROUND	DC DATA D1	36
37	DC DATA D2	+5V	38
39	GROUND	DC DATA D3	40
41	DC DATA D4	DC DATA D5	42
43	DC DATA D6	GROUND	44
45	V(I/O)-1	DC DATA D7	46
47	DC DATA D8	DC DATA D9	48
49	DC DATA D10	+5V	50
51	GROUND	DC DATA D11	52
53	DC DATA D12	DC DATA D13	54
55	DC DATA D14	GROUND	56
57	V(I/O)-1	DC DATA D15	58
59	DC DATA D16	DC DATA D17	60
61	DC DATA D18	+5V	62
63	GROUND	DC DATA D19	64

3.3.2.12 LVDS (400 Mbit/s) Destination Board Connector P1

Table 12. LVDS (400Mbit/s) Destination Board Connector P1 pin-out

- (S) Status Register
- (F) Data FPGA
- (C) Control Register

Pin	Signal	Signal	Pin
1	+12V	DisMotherProm1	2
3	LVDS-PWDN* (C)	DisMotherProm2	4
5	PromDONE	GROUND	6
7	GROUND	PromDATA	8
9	PromINIT		10
11	Busmode2#	+3.3V	12
13	User defined	Busmode3#	14
15	+3.3V	Busmode4#	16
17		GROUND	18
19	RCLKAL (F)	RCLKBL (F)	20
21	GROUND		22
23	RCLKCL (F)	+3.3V	24
25		Ser En	26
27	+3.3V	RCLKDL (F)	28
29	DC DATA CO	GROUND	30
31	DC DATA C2		32
33	GROUND	DC DATA C1	34
35	PromCCLK	+3.3V	36
37	GROUND	DC DATA C3	38
39	DC DATA C4	GROUND	40
41	+3.3V	DC DATA C5	42
43	DC DATA C6	GROUND	44
45	DC DATA C8	DC DATA C7	46
47	GROUND	DC DATA C9	48
49	DC DATA C10	+3.3V	50
51	DC DATA C12	DC DATA C11	52
53	+3.3V	DC DATA C13	54
55	DC DATA C14	GROUND	56
57	DC DATA C16	DC DATA C15	58
59	GROUND	DC DATA C17	60
61	DC DATA C18	+3.3V	62
63	GROUND	DC DATA C19	64

3.3.2.13 LVDS (400 Mbit/s) Destination Board Connector P2

Table 13. LVDS (400Mbit/s) Destination Board Connector P2 pin-out

- (S) Status Register
- (F) Data FPGA
- (C) Control Register
- Note 1. Busmode [4:2]# signals are driven by the motherboard, Busmode 1# is returned by the daughter card to indicate presence of the card. These signals are not used in the G-Link and LVDS daughter card designs.
 2. User Defined pins are spare pins for future use.

Pin	Signal	Signal	Pin
1	DC DATA A0	GROUND	2
3	GROUND	DC DATA A1	4
5	DC DATA A2	DC DATA A3	6
7	DC DATA A4	GROUND	8
9	V(I/O)-2	DC DATA A5	10
11	DC DATA A6	DC DATA A7	12
13	DC DATA A8	GROUND	14
15	GROUND	DC DATA A9	16
17	DC DATA A10	DC DATA A11	18
19	DC DATA A12	GROUND	20
21	V(I/O)-2	DC DATA A13	22
23	DC DATA A14	DC DATA A15	24
25	DC DATA A16	GROUND	26
27	GROUND	DC DATA A17	28
29	DC DATA A18	DC DATA A19	30
31	DC DATA B0	GROUND	32
33	GROUND	DC DATA B1	34
35	DC DATA B2	DC DATA B3	36
37	DC DATA B4	GROUND	38
39	V(I/O)-2	DC DATA B5	40
41	DC DATA B6	DC DATA B7	42
43	DC DATA B8	GROUND	44
45	GROUND	DC DATA B9	46
47	DC DATA B10	DC DATA B11	48
49	DC DATA B12	GROUND	50
51	GROUND	DC DATA B13	52
53	DC DATA B14	DC DATA B15	54
55	DC DATA B16	GROUND	56
57	V(I/O)-2	DC DATA B17	58
59	DC DATA B18	DC DATA B19	60
61	Spare (C)	GROUND	62
63	GROUND	LVDS-REN	64

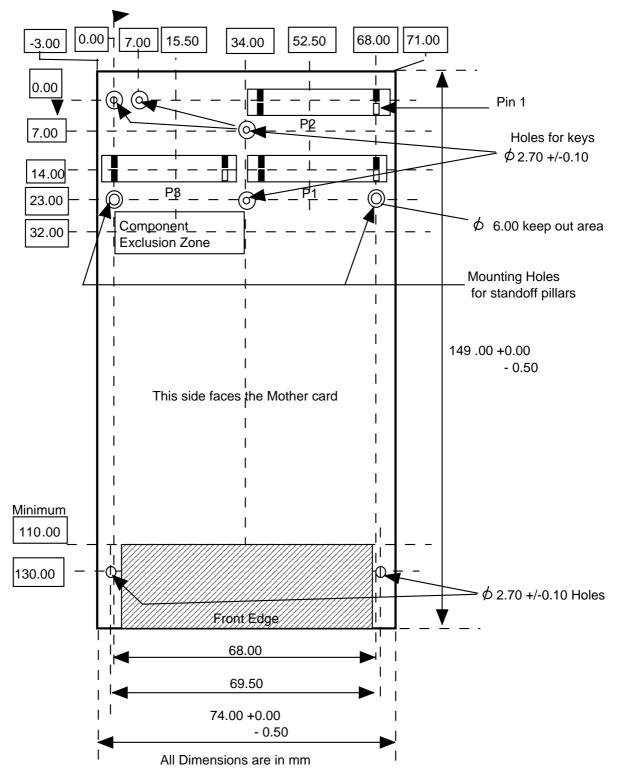

3.3.2.14 LVDS (400 Mbit/s) Destination Board Connector P3

Table 14. LVDS (400Mbit/s) Destination Board Connector P3 pin-out

The data bits are defined as 0 to 19 and the corresponding controls are defined as: L for bits 0 - 9 and H for bits 10 - 19.

Note: The V(I/O) pins on P1 and P3 should be tracked as shown below for selecting additional voltage pins if necessary

3.3.3 Physical Dimensions

The following diagram shows the physical dimensions for the daughter board.

Figure 14. Dimensions for the CMC Daughter boards (not to scale)

Note: Due to mixed voltage designs, the voltage key pins on the motherboard will be left out.

3.3.4 Component Height Restrictions

On the side facing the mother board the component height is restricted to 4.7 mm, except:

1. Where there is an exclusion zone of 34 mm x 6 mm.

2. In the shaded area (68 mm x 33 mm) the component height could be up to 9.8 mm. On the top side of the board the component height restriction is 3.50 mm including the board thickness (for a VME single width module). See figure 14.

3.3.5 CMC Bezel

For the front bezel and for other mechanical details refer to the IEEE P1386/Draft 2.0, 4 April-1995, standard for a Common Mezzanine Board family.

3.3.6 Signal Handling on the Daughter Boards

Since the signals between the daughter boards and the FPGAs on the mother board have to travel long distances, the tracks carrying the signals have to be transmission lines and must be terminated appropriately to the characteristic impedance (75 Ω) of these tracks. Only the source module should have series terminations as described in section 3.2.6.

3.3.7 Daughter Board PROMs

The PROMs on the daughter boards must be XC1701L-PD8 C (or equivalent), and should be in a socket.

3.3.8 Ground Points

At least one ground point must be provided for scope probe grounding.

3.3.8 Front Panel Input and Outputs

The front panel inputs/outputs to the daughter card will be through the front bezel and will differ from module to module.

3.3.8.1 Front Panel Monitoring (LEDs)

A minimum set of LEDs is recommended for the daughter modules depending on its functionality.

Description	Signal name	Colour
Vcc		Green
System clock is active	SYSCLK	Green
Locked signals		Green

3.4 Testing

3.4.1 Test Strategy

The DSS module allows the following tests to be carried out.

- 1. Stand alone test of the mother board (VME read/write and Loop back tests)
- 2. Test data loaded on to the dual-port RAMs and transmitting the data.
- 3. Serialising ASIC readout logic implemented on the FPGAs.
- 4. Transmitting pseudo random patterns implemented on the FPGAs

Figure 15 shows a typical test set-up to test a readout driver module.

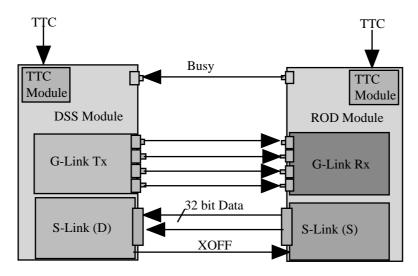


Figure 15. ROD Test set-up

3.4.2 Test Equipment

- (1) VME crate
- (2) 32 bit VME interface
- (3) Computer to run software
- (4) Demonstrator CPM and the TXM (initial tests on the G-Links)
- (5) Demonstrator DAQ system
- (6) Logic analyser
- (7) Oscilloscope
- (8) VME Extenders

3.5 Software

A test engineer from the System Support Group will develop the LabView test software.

For the complete tests for example with the ROD module, software will be required from the customer.

3.6 Manufacturing

An outside manufacturer will carry out the manufacture of the PCBs and the component assembly.

3.7 Installation

The DSS motherboard is designed to sit in a 6U crate with a VME (J1, J2) back plane. The module will be provided with a front panel containing sockets and monitoring LEDs as described in section 3.2.7, two slots for CMC modules. It may be implemented as double width module when using with G-Link daughter boards to accommodate the heat sinks.

3.8 Maintenance and further orders

This module is expected to be used in testing various prototype and production modules, and may be required by the other collaborating institutes. In the first instance a minimum of four DSS modules will be required for the UK group.

4. Project Management

4.1 Personnel

		RAL Ext.	RAL Location
Customer:	C. N. P. Gee	6244	R1, 1.39
Project Manager:	V. Perera	5692	R68, 2.31
Project Engineer	J. Edwards	6814	R68, 2.09

4.2 Deliverables

4.2.1 To the Customer:

- 1. Eight DSS mother boards.
- 2. Specification document and User Manual

4.2.2 From the Customer:

Test Software, Powered VME crate (with J1 and J2 connectors) and a software platform to allow the test software to drive the DSS Module.

4.3 Project plan (Milestones)

- 1. Preliminary Design Review (PDR)
- 2. Final Design Review (FDR)
- 3. Start Testing
- 4. Concluding Review (CR)

February - 1999 July - 1999 August - 1999 December -1999

4.4 Design Reviews

The customer must be present at the PDR and the CR. If the customer wishes, he may attend the FDR.

The progress of the project will be reported on a monthly basis in the ATLAS Calorimeter First-level Trigger project monitor form.

4.5 Training

Training will be carried out as required on the job.

4.6 CAE

Cadence for schematic capture, VHDL and FPGA design tools, and Lab View for test software.

4.7 Costs and finance

Cost Estimation

All manufacturing, assembly and component costs will be charged to FK40000.

4.8 Intellectual Property Rights (IPR) and Confidentiality

All background and foreground Intellectual Property Rights in this project will remain with CLRC. The customer will have unrestricted rights to items listed under deliverables (4.2). If the customer requires other data, then an appropriate protective agreement should be in place before releasing such data.

4.9 Safety

General laboratory safety codes apply.

4.10 Environmental impact

4.10.1 Disposal

RAL will dispose of the modules at end of their life.

4.10.2 EMC

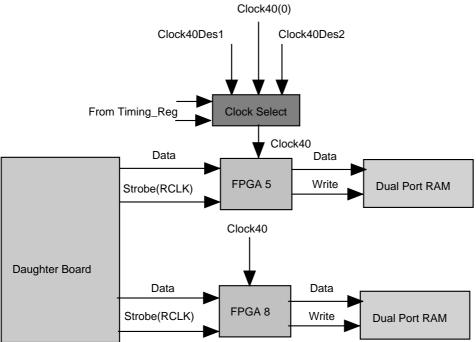
Since these are test modules and only to be used in a test environment by the collaborating institutes, the modules will not carry a CE mark. However since the electronics must function as designed, without malfunction or unacceptable degradation of performance due to electromagnetic interference (EMI) within their intended operational environment, the electronics shall comply with specifications intended to ensure electromagnetic compatibility.

4.11 Handling Precautions

Anti-static precautions must be taken when handling the module to prevent damage to expensive components.

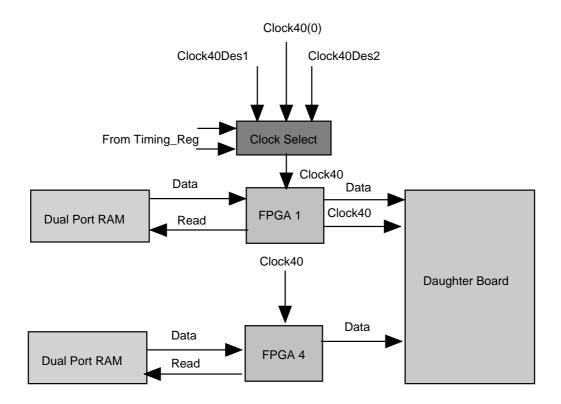
Appendix A

Timing Scheme for the DSS Modules


When using the TTC system or the TCM used in the demonstrator system, there will be three clock phases available on the motherboard. An appropriate clock phase from these three clocks will used on the daughter boards,

The three clocks are:

- Clock40
- Clock40Des1
- Clock40Des2


In the case of the TTC system the de-skew is programmed into the TTCrx chip. When using the TCM system, delay lines with step size of 1 ns to span the 25 ns clock cycle will be provided to adjust Clock40Des1 and Clock40Des2. The values of these delay lines can be set by the Timing Register (3.2.8.10)

These three clocks should be sufficient to adjust any ns for transmit and receive functions.

A suitable clock per group of four FPGAs is selected to to synchronise the data from the daughter board

Figure 1. Data Received Mode

A suitable clock per group of four FPGAs is selected to clock the data onto the Daughter Board

Changes to DSS Specification version 2c July 1999

- 1. Page 11. Registers 40 to 5C are read only registers
- 2. Page 12. Registers B8 DC are read only registers
- 3. Page 13. 120000-13FFFF data buffer 9 is source, 140000-15FFF data buffer 10 is Destination
- 4. Page 14. The mode bit definition will be as follows:

3.2.8.5.1 Mode Bits

Mode bit 2	2 Mode bit 1	Mode bit 0	Descriptive Name
0	0	0	No Test
0	0	1	Pseudo Random Pattern -32K
0	1	0	Memory to Memory Test (Bypass)- 32K
0	1	1	Read Back and Compare Test - 32 K
1	0	1	Pseudo Random Pattern Forever
1	1	0	Bypass Forever
1	1	1	Read Back and Compare Test Forever
1	0	0	S-Link Test

5. Page 15

- 1. section 3.2.8.5.2 Brcst bits 6 and 7 definitions
- 2. section 3.2.8.5.3, 0 and 1 definitions swapped
- 6. Page 18. Section 3.2.8.9.1

Bits 0-7 (16-23)

- 0 Links locked
- 1 Links not locked
- 7. Page 19 section 3.2.8.12 Pulse Register

Bit 0 renamed to FPGA Reset

Bit 5 added for S-Link destination counter reset