Version 1.0 22 March, 1999

### <u>SPECIFICATION OF 'G-LINK' DAUGHTER BOARDS FOR THE DATA SOURCE AND</u> <u>SINK MODULE 'DSS' TEST PLATFORM.</u>

### <u>'G-LINK' SOURCE DAUGHTER BOARD 'GTx' IN SINGLE CMC FORMAT.</u> <u>'G-LINK' SINK DAUGHTER BOARD 'GRx' IN SINGLE CMC FORMAT.</u>

### **OVERVIEW.**

The 'G-LINK' SOURCE DAUGHTER BOARD and 'G-LINK' SINK DAUGHTER BOARD will provide the physical layer of a system to allow testing of data transfer techniques between prototype modules for the Level 1 Calorimeter Trigger System and evaluate some elements of data transfer technologies. These boards will use the TTL version of HP G-LINK devices transmitting serialised data over a copper conductor. There will be four transmitter channels on the GTx board and four receiver channels on the GRx board. The data input to the GTx board will be as four parallel data words each of 20 bits at up to 40 MHz. The data output from the GRx board will be as four parallel data words each of 20 bits at up to 40 MHz.

The DSS mother board will interface between the controller (e.g. VME 147) and the Daughter Boards and provide control and timing signals and return status and error signals.

The principle use of this link technology is for the transmission of DAQ and RoI information between the Cluster Processing Modules (CPMs), Read Out Drivers (RODs), Cluster Merger Modules (CMMs), Jet Energy Modules (JEMs) and Jet Merger Modules (JMMs). Data will be transmitted following Level 1 Accepts and valid data will be indicated by assertion of the DAV signal.

G-LINK technology is an established medium for data transmission. These boards are intended to allow system tests with prototype Level 1 Trigger modules and therefore the ability to vary the operating modes of the G-LINK devices is limited to those necessary or to any previously untried modes. For example Flag control and Fill Frame control will not be accessible.

The two modules together with appropriate cabling will form a SIMPLEX link.

Note that while this specification concentrates on the operation of the G-LINK Daughter Board modules when fitted to a 'DSS' Mother Board, comparable interfacing must exist for the operation of these modules when operating within other systems e.g. the Prototype Read Out Driver (ROD) Module.

#### **REFERENCE DOCUMENTS.**

HEWLETT PACKARD Low Cost Gigabit Transmit/Receive Chip Set Technical Data Sheet for HDMP -1022 Transmitter and HDMP- 1024 Receiver.

Project Specification - ATLAS Calorimeter First level Trigger - Data Source and Sink Module Version 5.0.

Project Specifications for CPM & ROD.

Draft Standard for a Common Mezzanine Board Family: CMC, P1386/Draft 2.0 April 4, 1995. Draft Standard Physical and Environmental Layers for PCI Mezzanine Boards: PMC, P1386.1/Draft 2.0 April 4, 1995.

#### ABBREVIATIONS USED

| MB, DB   | == | Mother Board, Daughter Board.                  |
|----------|----|------------------------------------------------|
| Tx, Rx   | == | Transmitter, Receiver.                         |
| TCM, TTC | == | Timing Control Module, Timing Trigger Control. |
| CPM, ROD | == | Cluster Processor Module, Read Out Driver.     |

# SERIAL INPUT AND OUTPUT FUNCTIONALITY.

The G-LINK GTx and GRx modules will be configurable to operate in either 'Differential Drive' or 'Single Ended Drive' mode each with a separate connector type.

The two serial input and output connection options will be selectable via jumper pads. Option 1 will be via 2mm grid connectors e.g. Metral and twinax or screened twisted pair cable and option 2 will be via coaxial connectors e.g. Metral coaxial and miniature coaxial cable. A range of lengths will be tested.

These I/O connectors will be electrically isolated from any front panel, see CMC spec.

No direct ground connection will be provided between the GTx and GRx modules. A configurable ground connection via jumpers will be available. Overall strategy on grounding between modules is to be agreed.

## THE INTERFACE BETWEEN MOTHER BOARD AND DAUGHTER BOARDS.

### DATA, STROBES, CONTROL and STATUS SIGNALS IDENTIFICATION.

The signals comprising the four channels will be identified and labelled with suffixes A to D. D00 will be the least significant data bit and D19 the most significant. Signals common to all channels will not have a suffix.

### INTERFACING OF INTER MOTHER BOARD & DAUGHTER BOARD SIGNALS

All MB to DB signals are routed via connectors P1, P2 and P3. These are placed and have the basic pin configurations as per the CMC and PCM specifications.

The signal levels at this interface will be standard TTL.

The polarity of signals at the interface will be that as directly required for or generated by the G-LINK devices.

### SIGNAL TERMINATION

All signals (data, strobes, control and status lines) will be series terminated with 100 ohms at the signal source.

Hence inputs to the DB from the MB will be terminated on the MB and outputs from the DB to the MB will be terminated on the DB.

#### LOGIC LEVEL TRANSLATIONS

None is required.

### SIGNAL TRACKS ON THE DAUGHTER BOARDS

Where practical all signal paths on the daughter boards will be constructed as 100 ohm Micro-strip or Strip lines.

# MB TO GTx DB INTERFACE; DEFINITION & FUNCTION OF SIGNALS.

| Interface<br>signal name | G_LINK<br>signal name | Description.                                                                                                                           |
|--------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| GLinkReset*;             | RST*                  | Generated from Reset Control Register. Resets all G-LINK internal registers, assert for >5 transmit clock periods.                     |
| GLinkRdy(n)*;            | RFD(n)                | Generated by G-LINK device. Indicates that device is ready<br>to accept data for transmission. One line per channel.                   |
| GLinkDav(n)*;            | DAV(n)*               | Generated on Mother <b>B</b> oard. Indicates that valid data is present on the device data input lines. One line per channel.          |
| GLinkClk(n);             | STRBIN                | Generated on Mother Board. Indicates rate of data frame transmission. One line per channel                                             |
| MB TO DESTINA            | TION (Rx) DB IN       | TERFACE; DEFINITION & FUNCTION OF SIGNALS.                                                                                             |
| Interface<br>signal name | G_LINK<br>signal name | Description.                                                                                                                           |
| GLinkReset*;             | SMRST0*               | Generated from Reset Control Register. Resets G-LINK device, causes PLL locking restart.                                               |
| GLinkRdy(n)*;            | LINKRDY(n)*           | Generated by G-LINK device. Indicates that device has<br>correctly initialised and has valid controls states. One line<br>per channel. |
| GLinkDav(n)*;            | DAV(n)*               | Generated by G-LINK device. Indicates that valid data is present on the device data output lines. One line per channel.                |
| GlinkRefClk;             | LIN                   | Generated on Mother Board, approximates to rate of data frame reception. Common to all channels.                                       |
| GLinkErr(n);             | ERROR(n)              | Generated by G-LINK device. Indicates that device has<br>received a frame with invalid encoding. One line per<br>channel.              |
| GLinkStrb(n);            | STRBOUT(n)            | Generated by G-LINK device. Indicates actual frame receipt<br>rate and time at which received data is valid.                           |
| DIV0;                    | DIV0                  | Generated from controller. Sets G-LINK V.C.O. division chain factor. Common to all channels.                                           |
| EQEN(n);                 | EQEN(n)               | Generated from controller. Selects input cable equalisation amplifier. One line per channel.                                           |
| MOD20SEL;                | MOD20SEL              | Generated from controller. Selects 16 bits or 20 bits mode.<br>Common to all channels.                                                 |

#### **G-LINK TRANSMITTER DEVICE, FUNCTION IMPLEMENTATION**

The following G-LINK TRANSMITTER control/strobe functions will be accessible via the DSS MB to DB interface:-

DAV\*, RST\*.

A transmit clock will be applied to STRBIN.

The following G-LINK control/strobe functions will NOT be accessible via the DSS MB to DB interface but set at an appropriate logic level:-

CAV\*, DIV0, DIV1, ED, EHCLKSEL, FF, FLAG, FLAGSEL, HCLKON, LOOPEN, MDFSEL, M20SEL.

The following G-LINK TRANSMITTER status output will be accessible via the DSS MB to DB interface:-

LOCKED (via ED & RFD)

The following G-LINK TRANSMITTER functions or outputs will be accessible via local monitoring points:-

LOCKED, STRBOUT.

The following G-LINK TRANSMITTER functions or outputs will be NOT be accessible:-

HCLK, HCLK\*, INV, LOUT, LOUT\*, TEMP, TEMP\*.

**G-LINK RECEIVER DEVICE, FUNCTION IMPLEMENTATION** 

The following G-LINK RECEIVER control/strobe functions will be accessible via the DSS MB to DB interface:-

DIV0, EQEN, M20SEL, SMRST0\*.

A reference clock (GlinkRefClk) will be applied to LIN.

The following G-LINK RECEIVER controllable functions will NOT be accessible via the DSS MB to DB interface but set at an appropriate logic level or configured as required:-

ACTIVE, DIV1, FDIS, FLAGSEL, LOOPEN, SMRST1\*, TCLK, TCLKSEL.

The following G-LINK RECEIVER status or strobe functions will be accessible via the DSS MB to DB interface:-

DAV\*, ERROR, LINKRDY\*, STRBOUT.

The following G-LINK RECEIVER function will also be accessible via local monitoring points:-

STRBOUT.

The following G-LINK RECEIVER functions or outputs will be NOT be accessible via the DSS MB to DB interface but will be set at an appropriate logic level or configured as required:-

CAV\*, FLAG, FF, LIN\*, STAT0, STAT1, TEMP, TEMP\* .

#### **INTERFACE SIGNAL TYPES AND ASSOCIATED TIMINGS**

The timing specifications are as per the G-LINK data sheet. These specify the  $\underline{G-LINK}$  signals at the MB / DB interface either received from, or transmitted to, the Mother Board.

Source (GTx) Module.

| RST*      | Generated from Reset Control Register. Assert for >5 transmit clock periods. |
|-----------|------------------------------------------------------------------------------|
| D00 - D19 | 1 Clock Cycle Pulse; Output from Data FPGAs on MB.                           |
| DAV       | 1 Clock Cycle Pulse; From data flow control logic on MB.                     |
| STRBIN    | From MB, 50% Duty cycle at frame transmit rate.                              |
| RFD       | Level; From G-LINK device, re-timed LOCKED signal.                           |

D00 - D19 & DAV presented with minimum or greater set up and hold times w.r.t. STRBIN. (Min = 2nS.)

#### Destination (GRx) Module.

| DIV0, EQEN, MOD20SEL | Level; Programmed to logic 0 or logic 1 via DB Control Register.                                  |
|----------------------|---------------------------------------------------------------------------------------------------|
| SMRST0*              | Generated from Reset Control Register.                                                            |
| D00 - D19            | 1 Clock Cycle Pulse; Input to Data FPGAs on MB.                                                   |
| DAV                  | 1 Clock Cycle Pulse; Input to data flow control logic on MB.                                      |
| ERROR                | 1 Clock Cycle Pulse; Input to MB.                                                                 |
| LINKRDY              | Level; Input to Status Register on MB.                                                            |
| STRBOUT              | Duty Cycle as per spec; Input at frame received rate to data flow control and status logic on MB. |

D00 - D19, DAV and ERROR asserted by G-LINK device with specified set up and hold times w.r.t. STRBOUT.

#### **DAUGHTER BOARD'S PHYSICAL CHARACTERISTICS**

VOLTAGE SUPPLIES

| Voltage rail | Estimated Current |  |  |
|--------------|-------------------|--|--|
| +5V          | ? Amps            |  |  |
| V(I/O)       | See note          |  |  |
| +3.3V        | ? mA              |  |  |

All supply voltages are supplied by the Mother Board via the P1, P2 & P3 connectors, none is derived on the Daughter Board. N.B. The V(I/O) pins on P1 may be used as additional VCC contacts by bridging links provided.  $+3.3v_{only}$  used to supply FPGA (E)EPROM.

### **G-LINK DEVICES ENVIRONMENT**

0.1uF capacitors will be fitted between the CAP0B and CAP1B connections on all devices. VCC, VCC\_HS, VCCTTL, GND and GNDTTL connections will be made to VCC and GND supply planes. He recommended de-coupling and termination will be applied.

#### MOTHER BOARD TO DAUGHTER BOARD CONNECTOR TYPES

The following MB/DB connectors will give 10 mm stacking. Plug (P) (Molex 53483-0649) on the Daughter Boards. Socket (J) (Molex 52763-0649) on the Mother Boards.

### **BOARD PROFILE**

As per CMC specification. See references.

### COMPONENT HEIGHT RESTRICTIONS

On the side facing the mother board - 'Side 1' - the maximum component height is 4.7 mm. Other exclusion zones are detailed in the DSS specification, eg 'SLink' connector area. No limit can be placed on the height of components on Side 2 due to the need for heat sinks on the G\_LINK and other devices.

### FRONT PANEL FORMAT & GENERAL MECHANICAL FEATURES

For the front panel and for other mechanical details refer to the IEEE P1386/Draft 2.0, 4 April-1995, standard for a Common Mezzanine Board family. However the size of connectors required on the bezel excludes the use of a standard sized bezel.

#### FRONT PANEL MONITORING (LEDS)

Leds will be provided in the Daughter Board's front panel. Leds fitted will depend on board type

| GTx Led Displays       | Colour | GRx Led Displays       | Colour |
|------------------------|--------|------------------------|--------|
| VCC                    | Green  | VCC                    | Green  |
| G-LINK Clock Present   | Green  | G-LINK Clock Present   | Green  |
| DAV(n) - 1 per channel | Green  | DAV(n) - 1 per channel | Green  |
| Link Ready (n) - 1 per | Green  | Link Ready (n) - 1 per | Green  |
| channel                |        | channel?               |        |
|                        |        | Link Error (n) - 1 per | Yellow |
|                        |        | channel?               |        |

### FRONT PANEL CONNECTOR TYPES

Connector types for the serial inputs and outputs are BERG Metral signal (5x6) and BERG Metral Co-Axial (6 ways). The configuration of the connectors will be by patching links on the PCB.

### CONNECTOR & INTER-MODULE GROUNDING

Links will be provided to enable inter-module grounding via the I/O cables if required.

### CABLE TYPES & LENGTHS

To be decided.

# DAUGHTER BOARDS CONTROLS AND TESTING

### MEMORY MAP

The control and status registers for both Daughter Boards types are configured into the Mother Board Control logic, see DSS Mother Board specification (3.2.8.x). No additional registers will exist on the Daughter Boards

## DAUGHTER BOARD CONFIGURATION PROMS

The E(E)PROMs on the Daughter Boards will be socketed . Sockets for XC1701L (DIP - 8) and AT17LV010 (PLCC - 20) will be provided.

## DAUGHTER BOARD CONFIGURATION E(E)PROMS PROGRAMMING

The daughter board configuration E(E)PROMS are programmed via the MB or off-line. An 'In-System-Programming Port' (ISP) and a VME programming port are provided on the Mother Board for transferring configuration data to the DB configuration E(E)PROMs. Programmable parts or separate ISP ports on the Daughter Board are not provided.

### CONFIGURATION CODE DEVELOPMENT

Development of the configuration code will be done in conjunction with the MB designers i.e. RAL Technology Department.

### TEST PROGRAMMING

Test software is required to perform the following functions.

<u>Source Module (GTx)</u> - Generate module 'Reset', set up operating mode(s), read status, take correcting action as required on error conditions, load test or other data patterns into DSS module, initiate data transfers, perform timing adjustments i.e. vary delays.

<u>Destination Module (GRx)</u> - Generate module 'Reset', set up operating mode(s), read status, take correcting action as required on error conditions, initiate data transfers into DSS module, compare received data patterns with transmitted data patterns, perform timing adjustments i.e. vary delays.

### **TESTING**

Stand alone testing will be limited to DC and continuity checks, all functional tests will require a Mother Board and computer access.

# **DAUGHTER BOARDS DESIGN & MANUFACTURE**

A provisional date of mid April '99 has been given by RAL Drawing Office for layout.

# ASSOCIATED DSS MOTHER BOARD INFORMATION

CLOCK OPTIONS ON THE DSS (MB) MODULE

(Taken from DSS Specification).

A system clock will be generated from either the TTCrx (normally) or TCM (initially) modules. Three phases will be derived on the mother board and an appropriate phase from one of these will be made available to the daughter boards. The three clocks are:

- Clock40
- Clock40Des1
- Clock40Des2

In the case of the TTC system the de-skew (delay) is programmed into the TTCrx chip. When using the TCM system (mother board) programmable delays, with step size of 1 ns to span the 25 ns clock cycle, will be provided to adjust Clock40Des1 and Clock40Des2. The values of these delays can be set by the Timing Register.

In addition a Reference clock at approximately 40Mhz will be available for the GRx module.

# CLOCK USAGE BASIC DIAGRAM.



One of the three clocks is used by the FPGA to clock data to or from the Daughter Boards

# **MB - DB INTER CONNECTIONS SIGNAL TO PIN ALLOCATION**

| Pin | Signal                     | Signal                                 | Pin |
|-----|----------------------------|----------------------------------------|-----|
| 1   | GLinkRESET* (Common Reset) | -12V                                   | 2   |
| 3   | GROUND                     | GLinkRdyA* (Channel A Status)          | 4   |
| 5   | DBID-1                     | GLinkRdyB* ( " B " )                   | 6   |
| 7   | Busmode1#                  | +5V                                    | 8   |
| 9   | DBID-2                     | GLinkRdyC* ( " C " )                   | 10  |
| 11  | GROUND                     | GLinkRdyD* ( " D " )                   | 12  |
| 13  |                            | GROUND                                 | 14  |
| 15  | GROUND                     | GLinkDAVA* (Channel A Data Ready Flag) | 16  |
| 17  | DBID-3                     | +5V                                    | 18  |
| 19  | V (I/O)                    | GLinkDAVB* ( " B " " )                 | 20  |
| 21  |                            | GLinkDAVC* ( " C " " )                 | 22  |
| 23  |                            | GROUND                                 | 24  |
| 25  | GROUND                     | GLinkDAVD* ( " D " " )                 | 26  |
| 27  |                            | DBID-4                                 | 28  |
| 29  |                            | +5V                                    | 30  |
| 31  | V (I/O)                    | DBID-5                                 | 32  |
| 33  | GDD0                       | GROUND                                 | 34  |
| 35  | GROUND                     | GDD1                                   | 36  |
| 37  | GDD2                       | +5V                                    | 38  |
| 39  | GROUND                     | GDD3                                   | 40  |
| 41  | GDD4                       | GDD5                                   | 42  |
| 43  | GDD6                       | GROUND                                 | 44  |
| 45  | V (I/O)                    | GDD7                                   | 46  |
| 47  | GDD8                       | GDD9                                   | 48  |
| 49  | GDD10                      | +5V                                    | 50  |
| 51  | GROUND                     | GDD11                                  | 52  |
| 53  | GDD12                      | GDD13                                  | 54  |
| 55  | GDD14                      | GROUND                                 | 56  |
| 57  | V (I/O)                    | GDD15                                  | 58  |
| 59  | GDD16                      | GDD17                                  | 60  |
| 61  | GDD18                      | +5V                                    | 62  |
| 63  | GROUND                     | GDD19                                  | 64  |

G-Link Source Board (GTx) Connector P1



Data Interface between the G-Links and FPGAs

| G-LINK Source Board (GTX) Connector F | <u>G</u> - | Link Source | Board | (GTx) | ) Connector P | 2 |
|---------------------------------------|------------|-------------|-------|-------|---------------|---|
|---------------------------------------|------------|-------------|-------|-------|---------------|---|

| Pin | Signal     | Signal         | Pin |
|-----|------------|----------------|-----|
| 1   | +12V       | DisMotherProm1 | 2   |
| 3   |            | DisMotherProm2 | 4   |
| 5   | PromDONE   | GROUND         | 6   |
| 7   | GROUND     | PromDATA       | 8   |
| 9   | PromINIT   |                | 10  |
| 11  | Busmode2#  | +3.3V          | 12  |
| 13  |            | Busmode3#      | 14  |
| 15  | +3.3V      | Busmode4#      | 16  |
| 17  |            | GROUND         | 18  |
| 19  | GlinkClk_A | GlinkClk_B     | 20  |
| 21  | GROUND     |                | 22  |
| 23  | GlinkClk_C | +3.3V          | 24  |
| 25  |            | Ser_En         | 26  |
| 27  | +3.3V      | GlinkClk_D     | 28  |
| 29  | GDC0       | GROUND         | 30  |
| 31  | GDC2       |                | 32  |
| 33  | GROUND     | GDC1           | 34  |
| 35  | PromCCLK   | +3.3V          | 36  |
| 37  | GROUND     | GDC3           | 38  |
| 39  | GDC4       | GROUND         | 40  |
| 41  | +3.3V      | GDC5           | 42  |
| 43  | GDC6       | GROUND         | 44  |
| 45  | GDC8       | GDC7           | 46  |
| 47  | GROUND     | GDC9           | 48  |
| 49  | GDC10      | +3.3V          | 50  |
| 51  | GDC12      | GDC11          | 52  |
| 53  | +3.3V      | GDC13          | 54  |
| 55  | GDC14      | GROUND         | 56  |
| 57  | GDC16      | GDC15          | 58  |
| 59  | GROUND     | GDC17          | 60  |
| 61  | GDC18      | +3.3V          | 62  |
| 63  | GROUND     | GDC19          | 64  |

| Pin | Signal  | Signal | Pin |
|-----|---------|--------|-----|
| 1   | GDA0    | GROUND | 2   |
| 3   | GROUND  | GDA1   | 4   |
| 5   | GDA2    | GDA3   | 6   |
| 7   | GDA4    | GROUND | 8   |
| 9   | V (I/O) | GDA5   | 10  |
| 11  | GDA6    | GDA7   | 12  |
| 13  | GDA8    | GROUND | 14  |
| 15  | GROUND  | GDA9   | 16  |
| 17  | GDA10   | GDA11  | 18  |
| 19  | GDA12   | GROUND | 20  |
| 21  | V (I/O) | GDA13  | 22  |
| 23  | GDA14   | GDA15  | 24  |
| 25  | GDA16   | GROUND | 26  |
| 27  | GROUND  | GDA17  | 28  |
| 29  | GDA18   | GDA19  | 30  |
| 31  | GDB0    | GROUND | 32  |
| 33  | GROUND  | GDB1   | 34  |
| 35  | GDB2    | GDB3   | 36  |
| 37  | GDB4    | GROUND | 38  |
| 39  | V (I/O) | GDB5   | 40  |
| 41  | GDB6    | GDB7   | 42  |
| 43  | GDB8    | GROUND | 44  |
| 45  | GROUND  | GDB9   | 46  |
| 47  | GDB10   | GDB11  | 48  |
| 49  | GDB12   | GROUND | 50  |
| 51  | GROUND  | GDB13  | 52  |
| 53  | GDB14   | GDB15  | 54  |
| 55  | GDB16   | GROUND | 56  |
| 57  | V (I/O) | GDB17  | 58  |
| 59  | GDB18   | GDB19  | 60  |
| 61  |         | GROUND | 62  |
| 63  | GROUND  |        | 64  |

G-Link Source Board (GTx) Connector P3

Status and Control registers implemented on the mother board:

**Control register:** 

Reset - one bit. Status register: LinkRdy - four bits PromDone - one bit

| Pin | Signal                     | Signal                                 | Pin |
|-----|----------------------------|----------------------------------------|-----|
| 1   | GLinkRESET* (Common Reset) | -12V                                   | 2   |
| 3   | GROUND                     | GLinkRdyA* (Channel A Status)          | 4   |
| 5   | DBID-1                     | GLinkRdyB* ( " B " )                   | 6   |
| 7   | Busmode1#                  | +5V                                    | 8   |
| 9   | DBID-2                     | GLinkRdyC* ( " C " )                   | 10  |
| 11  | GROUND                     | GLinkRdyD* ( " D " )                   | 12  |
| 13  | GLinkRefClk                | GROUND                                 | 14  |
| 15  | GROUND                     | GLinkDAVA* (Channel A Data Ready Flag) | 16  |
| 17  | DBID-3                     | +5V                                    | 18  |
| 19  | V (I/O)                    | GLinkDAVB* ( " B " " )                 | 20  |
| 21  | GLinkErrA                  | GLinkDAVC* ( " C " " )                 | 22  |
| 23  | GLinkErrB                  | GROUND                                 | 24  |
| 25  | GROUND                     | GLinkDAVD* ( " D " " ")                | 26  |
| 27  | GLinkErrC                  | DBID-4                                 | 28  |
| 29  | GLinkErrD                  | +5V                                    | 30  |
| 31  | V (I/O)                    | DBID-5                                 | 32  |
| 33  | GDD0                       | GROUND                                 | 34  |
| 35  | GROUND                     | GDD1                                   | 36  |
| 37  | GDD2                       | +5V                                    | 38  |
| 39  | GROUND                     | GDD3                                   | 40  |
| 41  | GDD4                       | GDD5                                   | 42  |
| 43  | GDD6                       | GROUND                                 | 44  |
| 45  | V (I/O)                    | GDD7                                   | 46  |
| 47  | GDD8                       | GDD9                                   | 48  |
| 49  | GDD10                      | +5V                                    | 50  |
| 51  | GROUND                     | GDD11                                  | 52  |
| 53  | GDD12                      | GDD13                                  | 54  |
| 55  | GDD14                      | GROUND                                 | 56  |
| 57  | V (I/O)                    | GDD15                                  | 58  |
| 59  | GDD16                      | GDD17                                  | 60  |
| 61  | GDD18                      | +5V                                    | 62  |
| 63  | GROUND                     | GDD19                                  | 64  |

G-Link Destination Board (GRx) Connector P1



Data Interface between the G-Link receivers and FPGAs

| G-Link Destination Board ( | GRx) | ) Connector P2 |
|----------------------------|------|----------------|
|----------------------------|------|----------------|

| Pin | Signal     | Signal         | Pin |
|-----|------------|----------------|-----|
| 1   | +12V       | DisMotherProm1 | 2   |
| 3   |            | DisMotherProm2 | 4   |
| 5   | PromDONE   | GROUND         | 6   |
| 7   | GROUND     | PromDATA       | 8   |
| 9   | PromINIT   | DIV0           | 10  |
| 11  | Busmode2#  | +3.3V          | 12  |
| 13  | EQEN_A     | Busmode3#      | 14  |
| 15  | +3.3V      | Busmode4#      | 16  |
| 17  | EQEN_B     | GROUND         | 18  |
| 19  | GLinkStrbA | GLinkStrbB     | 20  |
| 21  | GROUND     | EQEN_C         | 22  |
| 23  | GLinkStrbC | +3.3V          | 24  |
| 25  | EQEN_D     | Ser_En         | 26  |
| 27  | +3.3V      | GLinkStrbD     | 28  |
| 29  | GDC0       | GROUND         | 30  |
| 31  | GDC2       | MOD20SEL       | 32  |
| 33  | GROUND     | GDC1           | 34  |
| 35  | PromCCLK   | +3.3V          | 36  |
| 37  | GROUND     | GDC3           | 38  |
| 39  | GDC4       | GROUND         | 40  |
| 41  | +3.3V      | GDC5           | 42  |
| 43  | GDC6       | GROUND         | 44  |
| 45  | GDC8       | GDC7           | 46  |
| 47  | GROUND     | GDC9           | 48  |
| 49  | GDC10      | +3.3V          | 50  |
| 51  | GDC12      | GDC11          | 52  |
| 53  | +3.3V      | GDC13          | 54  |
| 55  | GDC14      | GROUND         | 56  |
| 57  | GDC16      | GDC15          | 58  |
| 59  | GROUND     | GDC17          | 60  |
| 61  | GDC18      | +3.3V          | 62  |
| 63  | GROUND     | GDC19          | 64  |

| Pin | Signal  | Signal | Pin |
|-----|---------|--------|-----|
| 1   | GDA0    | GROUND | 2   |
| 3   | GROUND  | GDA1   | 4   |
| 5   | GDA2    | GDA3   | 6   |
| 7   | GDA4    | GROUND | 8   |
| 9   | V (I/O) | GDA5   | 10  |
| 11  | GDA6    | GDA7   | 12  |
| 13  | GDA8    | GROUND | 14  |
| 15  | GROUND  | GDA9   | 16  |
| 17  | GDA10   | GDA11  | 18  |
| 19  | GDA12   | GROUND | 20  |
| 21  | V (I/O) | GDA13  | 22  |
| 23  | GDA14   | GDA15  | 24  |
| 25  | GDA16   | GROUND | 26  |
| 27  | GROUND  | GDA17  | 28  |
| 29  | GDA18   | GDA19  | 30  |
| 31  | GDB0    | GROUND | 32  |
| 33  | GROUND  | GDB1   | 34  |
| 35  | GDB2    | GDB3   | 36  |
| 37  | GDB4    | GROUND | 38  |
| 39  | V (I/O) | GDB5   | 40  |
| 41  | GDB6    | GDB7   | 42  |
| 43  | GDB8    | GROUND | 44  |
| 45  | GROUND  | GDB9   | 46  |
| 47  | GDB10   | GDB11  | 48  |
| 49  | GDB12   | GROUND | 50  |
| 51  | GROUND  | GDB13  | 52  |
| 53  | GDB14   | GDB15  | 54  |
| 55  | GDB16   | GROUND | 56  |
| 57  | V (I/O) | GDB17  | 58  |
| 59  | GDB18   | GDB19  | 60  |
| 61  |         | GROUND | 62  |
| 63  | GROUND  |        | 64  |

G-Link Destination Board (GRx) Connector P3

## Status and Control registers implemented on the mother board:

## **Control register:**

Reset - one bit. DIV0 - one bits. EQEN - four bits MOD20SEL - one bit

# Status register:

Linkready - four bits Linkerror - four bits Config. Prom Done - one bit

R.W.Hatley.