Level-1 Calorimeter Trigger: Receiver to PPM Patch Panel Specifications

L1Calo Group 1

1 Introduction

The purpose of this note is to detail the Receiver to PPM patch panel connectivity in a more palatable format than that found in the overall Level-1 Calorimeter Trigger cabling document [1]. Much text and many figures from that document have been re-used here, but all material not of direct relevance has been omitted. If more details of the cable usage, and reasoning behind the connections is needed, that document should be consulted.

The Patch Panels are needed to re-package some of the signals coming from the receiver system [2],[3] and going to the PPM modules [4]. Typically, underpopulated cables from the receivers are combined onto fully packed cables to go the the PPMs, or vice versa. They are needed at points where the detector geometry is complex, and the remapping of signals needed could not be performed in the receivers alone. They are intended to be PCBs similar in design to the already prototyped TileCal Patch Panels [5].

2 Receiver to Preprocessor cabling

The analogue receivers can output up to 64 differential signals on 4 cables each containing 16 signal twisted pairs. In a similar way, the PPMs process 64 input signals coming from 4 input cables and, in general, one receiver output cable carries 16 signals to one PPM input. For the majority of the trigger space (360 out of 496 PPM inputs), a simple 1:1 mapping of receiver output to PPM input is sufficient. However there are four regions where special arrangements are required either combining or splitting cables. These are at the inputs of PPM_4, PPM_7 and hadronic PPM_9s, where the PPM numbering is taken from the PPM specification [4]. The repackaging of signals is achieved via the Receiver to PPM

¹Please send any comments and corrections to Stephen Hillier.

patch panels. Note that there are similar, but generally not identical, patch panels dealing with the situations at each end of the detector.

In a little more detail, the four regions are:

- PPM_4 (EM): the EM barrel/endcap transition requires that two receiver outputs (of 8 signals) are combined to a single PPM input. There are 8 EM instances of PPM_4 (2 ends * 4 quadrants) making 32 special PPM input cables from 64 receiver outputs, dealt with by 32 identical patch panels.
- PPM_4 (had): the TileCal/HEC transition is more complicated. Here one HEC output cable must be split into four sets of 4 signals and combined with four TileCal receiver outputs (each providing 12 signals) making four PPM inputs. There are 8 hadronic PPM_4s (2 ends * 4 quadrants), making 32 PPM inputs coming from 40 receiver outputs, via 8 similar patch panels.
- PPM_7 (both): here one receiver output of 12 signals is split into two PPM inputs of 6 signals in both EM and hadronic layers, ie 64 special PPM input cables from 32 receiver outputs, using 32 similar patch panels.
- PPM_9 (had): each hadronic FCAL PPM input comes from combining two receiver outputs providing 8 signals each. There are two hadronic PPM_9s in the system, so this represents 8 PPM input cables from 16 receiver outputs, needing 8 identical patch panels.

The situation is sufficiently different at positive and negative eta in the case of PPM_4 hadronic, and PPM_7 that different patch panel designs are required at each end. That means there are a total of 6 patch panel designs needed. The total number of patch panels and cables needed is summarized in table 1, and broken down as a function of patch panel type, which is numbered 1–6.

Туре	Region	Layer	Side	Patch	Number of	Number of
Number				Panels	Input Cables	Output Cables
1	PPM_4	EM	both	32	64	32
2	PPM_7	both	-ve	16	16	32
3	PPM_7	both	+ve	16	16	32
4	PPM_4	Hadronic	-ve	4	20	16
5	PPM_4	Hadronic	+ve	4	20	16
6	PPM_9	Hadronic	both	8	16	8
	Tota	al		80	152	136

Table 1: Receiver to PPM cabling: Numbers of patch panels and connections

3 Analogue Cable Connectors

In order to understand the connectivity of the analogue data at the individual signal level, rather than just cable level, one has to define the connector pin usage for the analogue cables. Standardised cables will be used throughout the receiver to PPM cabling, and these are described below.

There are 16 signals carried on twisted pairs in the standard analogue cables. The connectors at both ends are SUB D 37c connectors (male), which have 37 available pins. The 5 spare pins are used for grounds. For the purposes of this document, the 16 signal pairs are labelled 1–16. This is consistent with the most frequent uses of this label in all the reference documentation. However, in some documents the convention 0-15 is used, so care is needed when comparing with information using this convention. The assignment of pair wires to connector pins is shown in figure 3.

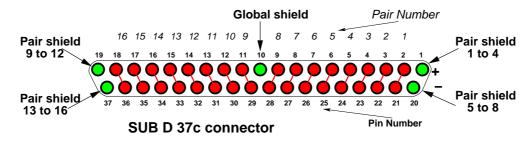


Figure 3: Connector pin usage on standard analogue cable

4 Patch Panels

The six types of patch panels needed have been described previously in the main cabling document [1]. For ease of reference, the specifications given there have been repeated here in Appendix A. However, it requires some effort to use these in conjuction with the cable specifications in figure 3 to determine the correct configuration of the patch panels. Therefore the details are also presented in hopefully more user friendly tables below.

4.1 Type 1: EM barrel/endcap merging

These are simple 2:1 merging patch panels, where each of the two input cables contains 8 signals to be combined onto a single fully packed output cable. They are the same for positive and negative eta, and so are the most common type of patch panel, with 32 needed for the full system. The PCB will consist of a single board with two input connectors at the top, and one output below. These are referred to in table 2 below, from top down, as Input 1, Input 2 and Output A. As detailed in the appendix, the assignment of input cables is:

• at negative eta, Input 1 is endcap, Input 2 is barrel

Ir	nput Locati	on	Out	put Locati	on
Cable	Signal	Pair	Cable	Signal	Pair
	Number	Number		Number	Number
Input 1	1	2/21	Output A	1	2/21
Input 1	2	3/22	Output A	2	3/22
Input 1	3	4/23	Output A	3	4/23
Input 1	4	5/24	Output A	4	5/24
Input 2	5	6/25	Output A	5	6/25
Input 2	6	7/26	Output A	6	7/26
Input 2	7	8/27	Output A	7	8/27
Input 2	8	9/28	Output A	8	9/28
Input 2	9	11/29	Output A	9	11/29
Input 2	10	12/30	Output A	10	12/30
Input 2	11	13/31	Output A	11	13/31
Input 2	12	14/32	Output A	12	14/32
Input 1	13	15/33	Output A	13	15/33
Input 1	14	16/34	Output A	14	16/34
Input 1	15	17/35	Output A	15	17/35
Input 1	16	18/36	Output A	16	18/36

• at positive eta, Input 1 is barrel, Input 2 is endcap

Table 2: Patch panel for EM barrel/endcap merging

The wiring splits neatly into four logical bundles of 4 signals, each contained within one grounding group on the input and output cables, so perhaps it might make sense for the populated 4-pair grounds to be wired straight through. However some care should be taken, particularly with the overall cable ground, as the input signals come from distinct barrel and endcap receiver crates, whereas all the

outputs go to PPM barrel modules. The barrel PPM crates will already have many direct cable connections, but the endcap receiver is isolated other than these patch patch connections.

4.2 Type 2: Negative high eta splitting

These are simple 1:2 splitting patch panels, where each of the two output cables contains 8 signals derived from the one fully packed single input cable. This type of patch panel only deals with signals at negative eta, but there are still 16 needed for the full system. The PCB will consist of a single board with one input connector at the top, and two outputs below. These are referred to in table 3 below, from top down, as Input 1, Output A and Output B. Output A corresponds to the low phi output, and Output B is high phi.

Ir	nput Locati	on	Out	put Locati	on
Cable	Signal	Pair	Cable	Signal	Pair
	Number	Number		Number	Number
Input 1	1	2/21	Output B	4	5/24
Input 1	2	3/22	Output B	6	7/26
Input 1	3	4/23	Output B	7	8/27
Input 1	4	5/24	Output B	8	9/28
Input 1	5	6/25	Output A	4	5/24
Input 1	6	7/26	Output A	6	7/26
Input 1	7	8/27	Output A	7	8/27
Input 1	8	9/28	Output A	8	9/28
Input 1	9	11/29	Output A	16	18/36
Input 1	10	12/30	Output A	10	12/30
Input 1	11	13/31	Output A	11	13/31
Input 1	12	14/32	Output A	12	14/32
Input 1	13	15/33	Output B	16	18/36
Input 1	14	16/34	Output B	10	12/30
Input 1	15	17/35	Output B	11	13/31
Input 1	16	18/36	Output B	12	14/32

Table 3: Patch panel for negative high eta splitting

Each input grounding bundle of four pairs goes mostly to one output bundle (3 out of 4 pairs) so it might be a good idea to wire these cases straight through. There are no crate to crate issues here, as each patch panel connects an endcap receiver crate to it's equivalent PPM crate, and these are already connected via many other direct cables.

4.3 Type **3**: Positive high eta splitting

These are simple 1:2 splitting patch panels, where each of the two output cables contains 8 signals derived from the one fully packed single input cable. This type of patch panel only deals with signals at positive eta, but there are still 16 needed for the full system. The PCB will consist of a single board with one input connector at the top, and two outputs below. These are referred to in table 4 below, from top down, as Input 1, Output A and Output B.

II	nput Locati	on	Output Location				
Cable	Signal	Pair	Cable	Signal	Pair		
	Number	Number		Number	Number		
Input 1	1	2/21	Output A	1	2/21		
Input 1	2	3/22	Output A	8	9/28		
Input 1	3	4/23	Output A	3	4/23		
Input 1	4	5/24	Output A	4	5/24		
Input 1	5	6/25	Output B	1	2/21		
Input 1	6	7/26	Output B	8	9/28		
Input 1	7	8/27	Output B	3	4/23		
Input 1	8	9/28	Output B	4	5/24		
Input 1	9	11/29	Output B	13	15/33		
Input 1	10	12/30	Output B	12	14/32		
Input 1	11	13/31	Output B	15	17/35		
Input 1	12	14/32	Output B	16	18/36		
Input 1	13	15/33	Output A	13	15/33		
Input 1	14	16/34	Output A	12	14/32		
Input 1	15	17/35	Output A	15	17/35		
Input 1	16	18/36	Output A	16	18/36		

Table 4: Patch panel for positive high eta splitting

Each input grounding bundle of four pairs goes mostly to one output bundle (3 out of 4 pairs) so it might be a good idea to wire these cases straight through. There are no crate to crate issues here, as each patch panel connects an endcap receiver crate to it's equivalent PPM crate, and these are already connected via many other direct cables.

4.4 Type 4: Hadronic negative eta barrel/endcap merging

These, along with Type 5, are the most complex patch panels in the system, with a requirement to merge signals from 5 input cables onto 4 output cables. This type of patch panel only deals with signals at negative eta, and only 4 are needed in the full system.

Four of the input cables come from the barrel region, and have 12 populated signals, which are packed in the order required for the output cables, the only difference being the lack of 4 necessary signals. The final input cable comes from the endcap region and contains 16 signals which are split up onto the 4 output cables to fill in the empty signals. A possible design for these patch panels can be seen in figure 4.4, where the top horizontal cable inputs correspond to those from the endcap (referred to as Input Cable 5 in the following tables), and the top row of four connectors in each unit are Input Cables 1–4, reading left to right, and the bottom row are Output Cables A–D (again left to right).

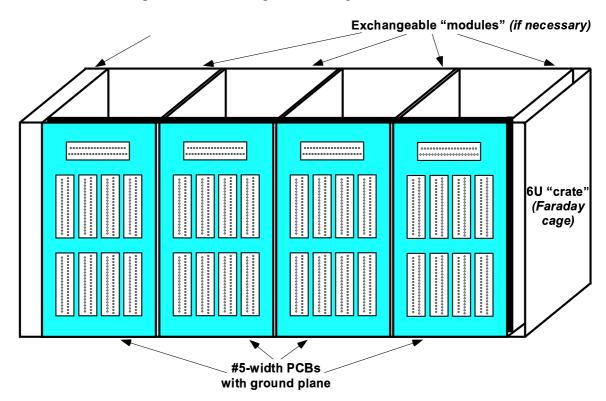


Figure 4.4: Layout of the four 5:4 patch panels required at each end

The connectivity is specified in the two following tables 5 and 6, where each table concentrates on the signal routing needed for two of the four output cables.

Ir	nput Locati	on	Out	put Locati	on
Cable	Signal	Pair	Cable	Signal	Pair
	Number	Number		Number	Number
Input 5	4	5/24	Output A	1	2/21
Input 1	2	3/22	Output A	2	3/22
Input 1	3	4/23	Output A	3	4/23
Input 5	3	4/23	Output A	4	5/24
Input 1	5	6/25	Output A	5	6/25
Input 1	6	7/26	Output A	6	7/26
Input 1	7	8/27	Output A	7	8/27
Input 1	8	9/28	Output A	8	9/28
Input 1	9	11/29	Output A	9	11/29
Input 1	10	12/30	Output A	10	12/30
Input 1	11	13/31	Output A	11	13/31
Input 1	12	14/32	Output A	12	14/32
Input 5	2	3/22	Output A	13	15/33
Input 1	14	16/34	Output A	14	16/34
Input 1	15	17/35	Output A	15	17/35
Input 5	1	2/21	Output A	16	18/36
Input 5	8	9/28	Output B	1	2/21
Input 2	2	3/22	Output B	2	3/22
Input 2	3	4/23	Output B	3	4/23
Input 5	7	8/27	Output B	4	5/24
Input 2	5	6/25	Output B	5	6/25
Input 2	6	7/26	Output B	6	7/26
Input 2	7	8/27	Output B	7	8/27
Input 2	8	9/28	Output B	8	9/28
Input 2	9	11/29	Output B	9	11/29
Input 2	10	12/30	Output B	10	12/30
Input 2	11	13/31	Output B	11	13/31
Input 2	12	14/32	Output B	12	14/32
Input 5	6	7/26	Output B	13	15/33
Input 2	14	16/34	Output B	14	16/34
Input 2	15	17/35	Output B	15	17/35
Input 5	5	6/25	Output B	16	18/36

Table 5: Patch panel for hadronic negative eta barrel/endcap merging (A and B)

Ir	put Locati	on	Out	tput Locati	on
Cable	Signal	Pair	Cable	Signal	Pair
	Number	Number		Number	Number
Input 5	12	14/32	Output C	1	2/21
Input 3	2	3/22	Output C	2	3/22
Input 3	3	4/23	Output C	3	4/23
Input 5	11	13/31	Output C	4	5/24
Input 3	5	6/25	Output C	5	6/25
Input 3	6	7/26	Output C	6	7/26
Input 3	7	8/27	Output C	7	8/27
Input 3	8	9/28	Output C	8	9/28
Input 3	9	11/29	Output C	9	11/29
Input 3	10	12/30	Output C	10	12/30
Input 3	11	13/31	Output C	11	13/31
Input 3	12	14/32	Output C	12	14/32
Input 5	10	12/30	Output C	13	15/33
Input 3	14	16/34	Output C	14	16/34
Input 3	15	17/35	Output C	15	17/35
Input 5	9	11/29	Output C	16	18/36
Input 5	16	18/36	Output D	1	2/21
Input 4	2	3/22	Output D	2	3/22
Input 4	3	4/23	Output D	3	4/23
Input 5	15	17/35	Output D	4	5/24
Input 4	5	6/25	Output D	5	6/25
Input 4	6	7/26	Output D	6	7/26
Input 4	7	8/27	Output D	7	8/27
Input 4	8	9/28	Output D	8	9/28
Input 4	9	11/29	Output D	9	11/29
Input 4	10	12/30	Output D	10	12/30
Input 4	11	13/31	Output D	11	13/31
Input 4	12	14/32	Output D	12	14/32
Input 5	14	16/34	Output D	13	15/33
Input 4	14	16/34	Output D	14	16/34
Input 4	15	17/35	Output D	15	17/35
Input 5	13	15/33	Output D	16	18/36

Table 6: Patch panel for hadronic negative eta barrel/endcap merging (C and D)

Given the straightforward mapping between input cables 1–4 and output cables A–D, it might be a good idea to take the grounds from these cables straight

through, and just terminate the grounds from input cable 5 in a suitable fashion. This would also make sense from a crate point of view, as these grounds would be connecting each tile receiver crate to its equivalent PPM hadronic barrel crate, which are already connected by direct cables.

4.5 Type 5: Hadronic positive eta barrel/endcap merging

These, along with Type 4, are the most complex patch panels in the system, with a requirement to merge signals from 5 input cables onto 4 output cables. This type of patch panel only deals with signals at positive eta, and only 4 are needed in the full system.

Four of the input cables come from the barrel region, and have 12 populated signals, which are packed in the order required for the output cables, the only difference being the lack of 4 necessary signals. The final input cable comes from the endcap region and contains 16 signals which are split up onto the 4 output cables to fill in the empty signals. The design of these patch panels should be similar to Type 4 described in the previous section.

The connectivity is specified in the two following tables 7 and 8, where each table concentrates on the signal routing needed for two of the four output cables. As in the previous section, cables are referred to as Input 1–5 and Output A–D.

Given the straightforward mapping between input cables 1–4 and output cables A–D, it might be a good idea to take the grounds from these cables straight through, and just terminate the grounds from input cable 5 in a suitable fashion. This would also make sense from a crate point of view, as these grounds would be connecting each tile receiver crate to its equivalent PPM hadronic barrel crate, which are already connected by direct cables.

Ir	put Locati	on	Out	tput Locati	on
Cable	Signal	Pair	Cable	Signal	Pair
	Number	Number		Number	Number
Input 1	1	2/21	Output A	1	2/21
Input 1	2	3/22	Output A	2	3/22
Input 1	3	4/23	Output A	3	4/23
Input 1	4	5/24	Output A	4	5/24
Input 1	5	6/25	Output A	5	6/25
Input 5	4	5/24	Output A	6	7/26
Input 5	3	4/23	Output A	7	8/27
Input 1	8	9/28	Output A	8	9/28
Input 1	9	11/29	Output A	9	11/29
Input 5	2	3/22	Output A	10	12/30
Input 5	1	2/21	Output A	11	13/31
Input 1	12	14/32	Output A	12	14/32
Input 1	13	15/33	Output A	13	15/33
Input 1	14	16/34	Output A	14	16/34
Input 1	15	17/35	Output A	15	17/35
Input 1	16	18/36	Output A	16	18/36
Input 2	1	2/21	Output B	1	2/21
Input 2	2	3/22	Output B	2	3/22
Input 2	3	4/23	Output B	3	4/23
Input 2	4	5/24	Output B	4	5/24
Input 2	5	6/25	Output B	5	6/25
Input 5	8	9/28	Output B	6	7/26
Input 5	7	8/27	Output B	7	8/27
Input 2	8	9/28	Output B	8	9/28
Input 2	9	11/29	Output B	9	11/29
Input 5	6	7/26	Output B	10	12/30
Input 5	5	6/25	Output B	11	13/31
Input 2	12	14/32	Output B	12	14/32
Input 2	13	15/33	Output B	13	15/33
Input 2	14	16/34	Output B	14	16/34
Input 2	15	17/35	Output B	15	17/35
Input 2	16	18/36	Output B	16	18/36

Table 7: Patch panel for hadronic positive eta barrel/endcap merging (A and B)

Ir	put Locati	on	Out	tput Locati	on	
Cable	Signal	Pair	Cable	Signal	Pair	
	Number	Number		Number	Number	
Input 3	1	2/21	Output C	1	2/21	
Input 3	2	3/22	Output C	2	3/22	
Input 3	3	4/23	Output C	3	4/23	
Input 3	4	5/24	Output C	4	5/24	
Input 3	5	6/25	Output C	5	6/25	
Input 5	12	14/32	Output C	6	7/26	
Input 5	11	13/31	Output C	7	8/27	
Input 3	8	9/28	Output C	8	9/28	
Input 3	9	11/29	Output C	9	11/29	
Input 5	10	12/30	Output C	10	12/30	
Input 5	9	11/29	Output C	11	13/31	
Input 3	12	14/32	Output C	12	14/32	
Input 3	13	15/33	Output C	13	15/33	
Input 3	14	16/34	Output C	14	16/34	
Input 3	15	17/35	Output C	15	17/35	
Input 3	16	18/36	Output C	16	18/36	
Input 4	1	2/21	Output D	1	2/21	
Input 4	2	3/22	Output D	2	3/22	
Input 4	3	4/23	Output D	3	4/23	
Input 4	4	5/24	Output D	4	5/24	
Input 4	5	6/25	Output D	5	6/25	
Input 5	16	18/36	Output D	6	7/26	
Input 5	15	17/35	Output D	7	8/27	
Input 4	8	9/28	Output D	8	9/28	
Input 4	9	11/29	Output D	9	11/29	
Input 5	14	16/34	Output D	10	12/30	
Input 5	13	15/33	Output D	11	13/31	
Input 4	12	14/32	Output D	12	14/32	
Input 4	13	15/33	Output D	13	15/33	
Input 4	14	16/34	Output D	14	16/34	
Input 4	15	17/35	Output D	15	17/35	
Input 4	16	18/36	Output D	16	18/36	

Table 8: Patch panel for hadronic positive eta barrel/endcap merging (C and D)

4.6 Type 6: FCAL hadronic merging

These are simple 2:1 merging patch panels, where each of the two input cables contains 8 signals to be combined onto a single fully packed output cable. They are the same for positive and negative eta, but only deal with a small amount of FCAL signals, so only 8 are needed for the full system. The PCB will consist of a single board with two input connectors at the top, and one output below. These are referred to in table 9 below, from top down, as Input 1, Input 2 and Output A.

In	nput Locati	on	Output Location				
Cable	Signal	Pair	Cable	Signal	Pair		
	Number	Number		Number	Number		
Input 2	2	3/22	Output A	1	2/21		
Input 1	2	3/22	Output A	2	3/22		
Input 2	4	5/24	Output A	3	4/23		
Input 1	4	5/24	Output A	4	5/24		
Input 2	6	7/26	Output A	5	6/25		
Input 1	6	7/26	Output A	6	7/26		
Input 2	8	9/28	Output A	7	8/27		
Input 1	8	9/28	Output A	8	9/28		
Input 2	10	12/30	Output A	9	11/29		
Input 1	10	12/30	Output A	10	12/30		
Input 2	12	14/32	Output A	11	13/31		
Input 1	12	14/32	Output A	12	14/32		
Input 2	14	16/34	Output A	13	15/33		
Input 1	14	16/34	Output A	14	16/34		
Input 2	16	18/36	Output A	15	17/35		
Input 1	16	18/36	Output A	16	18/36		

Table 9: Patch panel for hadronic FCAL merging

The interleaving nature of the signal mapping makes it awkward to suggest a good straight through ground scheme — there's no obvious best choice of direct connection. Perhaps it would be OK in this case just to combine grounds, since the input cables come from adjacent slots in a receiver crate anyway, and that receiver crate is well grounded to the PPM destination by many other direct cable connections.

A Patch Panel specifications

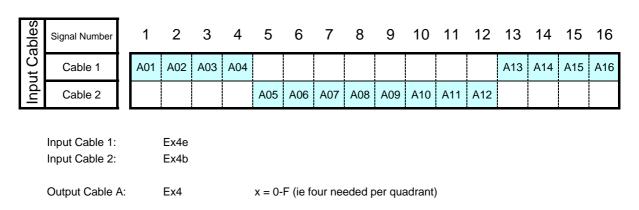

This appendix contains the full specifications for the connectivity of all the patch panels required as documented in the full cabling document [1]. The main feature of each figure is a table showing the mapping from input cable/pin numbers to output cable/pin numbers. All the patch panels are passive and simply provide a repackaging of the signals. In all cases the input and output cables consist of 16 twisted pair signals, which are labelled as running from 1 to 16. The input pin numbers form the x–axis, and the cable number the y–axis, and the contents show the output pin number in the format Xnn (X can be A–D for the output connector). Output cables are also indicated by shading with the convention illustrated in figure A.

Figure A: Colouring key for patch-panel tables.

The number of input and output cables varies between patch panels. The majority are of a relatively simple 2:1 merging or 1:2 sparsification topology. The most complex region is the Tile to HEC merging, which has 5 input cables merged to produce 4 outputs.

After the table comes a summary of the names of the actual input and output cables involved in each type of patch panel, and some information about their multiplicity. To understand these labels, see [1]. Note that the designs in figures A.1 and A.2 are actually identical, and so only one type of patch panel is needed. The two specifications are separated for historical reasons.

EM negative eta barrel/endcap merging

Figure A.1: Patch panel type 1 for receiver outputs for PPM_4 electromagnetic at negative eta

EM positive eta barrel/endcap merging

nput Cables	Signal Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
ut Ca	Cable 1	AC)1 A02	A03	A04									A13	A14	A15	A16
Inpu	Cable 2					A05	A06	A07	A08	A09	A10	A11	A12				
																	<u> </u>
	Input Cable 1:		ExBb	0													
	Input Cable 2:		ExBe	Э													
	Output Cable	A:	ExB			x = 0·	-F (ie f	four ne	eeded	per q	uadrai	nt)					

Figure A.2: Patch panel type 1 for receiver outputs for PPM_4 electromagnetic at positive eta

EM/Hadronic negative eta endcap sparsification

Jt	Signal Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Inpu	Cable 1	B04	B06	B07	B08	A04	A06	A07	A08	A16	A10	A11	A12	B16	B10	B11	B12

Electromagnetic -Z rack

Input Cable 1:	Ex1o	
Output Cable A: Output Cable B:	Ex1 E(x+1)1	x = 0, 2, 4, 6, 8, A, C, E (ie two needed per quadrant)
Hadronic -Z rack		
Input Cable 1:	Hx1o	
Output Cable A: Output Cable B:	Hx1 H(x+1)1	x = 0, 2, 4, 6, 8, A, C, E (ie two needed per quadrant)

Figure A.3: Patch panel type 2 for receiver outputs for PPM_7 at negative eta

EM/Hadronic positive eta endcap sparsification

ıt	Signal Number		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Input	Cable 1		A01	A08	A03	A04	B01	B08	B03	B04	B13	B12	B15	B16	A13	A12	A15	A16
Elec	Electromagnetic +Z rack																	
	Input Cable 1:			ExEo														
	Output Cable A Output Cable E		ExE E(x+1)E		x = 0,	2, 4,	6, 8, A	λ, C, Ε	ie tw	/o nee	eded p	er qua	adrant)			
Had	Ironic +Z rack	C																
	Input Cable 1:			HxEo														
	Output Cable A:HxEOutput Cable B:H(x+1)Ex = 0, 2, 4, 6, 8, A, C, E (ie two needed per quadrant))						
Figu	Figure A.4: Patch panel type 3 for receiver outputs for PPM_7 at positive eta																	

	Signal Number	-	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	Cable 1			A02	A03		A05	A06	A07	A08	A09	A10	A11	A12		A14	A15	
(0)	Cable 2			B02	B03		B05	B06	B07	B08	B09	B10	B11	B12		B14	B15	
Input Cables	Cable 3			C02	C03		C05	C06	C07	C08	C09	C10	C11	C12		C14	C15	
rt C	Cable 4			D02	D03		D05	D06	D07	D08	D09	D10	D11	D12		D14	D15	
Inpu	Cable 5		A16	A13	A04	A01	B16	B13	B04	B01	C16	C13	C04	C01	D16	D13	D04	D01
	Input Cable 1:			H04b		or		H44b		or		H84b		or		HC4b	1	
	Input Cable 2:			H14b		or		H54b		or		H94b		or		HD4b	1	
	Input Cable 3:			H24b		or		H64b		or		HA4b		or		HE4b		
	Input Cable 4:			H34b		or		H74b		or		HB4b		or		HF4b		
	Input Cable 5:			H04e		or		H44e		or		H84e		or		HC4e	!	
	Output Cable A	۹:		H04		or		H44		or		H84		or		HC4		
	Output Cable E	3:		H14		or		H54		or		H94		or		HD4		
	Output Cable 0	C:		H24		or		H64		or		HA4		or		HE4		
	Output Cable	D:		H34		or		H74		or		HB4		or		HF4		

Hadronic negative eta tile/endcap merging

_

Figure A.5: Patch panel type 4 for receiver outputs for PPM_4 hadronic at negative eta

	Signal Number		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	Cable 1		A01	A02	A03	A04	A05			A08	A09			A12	A13	A14	A15	A16
6	Cable 2		B01	B02	B03	B04	B05			B08	B09			B12	B13	B14	B15	B16
Input Cables	Cable 3		C01	C02	C03	C04	C05			C08	C09			C12	C13	C14	C15	C16
rt Câ	Cable 4		D01	D02	D03	D04	D05			D08	D09			D12	D13	D14	D15	D16
Inpu	Cable 5		A11	A10	A07	A06	B11	B10	B07	B06	C11	C10	C07	C06	D11	D10	D07	D06
		-																
	Input Cable 1:			H0Bb	,	or		H4Bb		or		H8Bb		or		HCBb)	
	Input Cable 2:			H1Bb	1	or		H5Bb		or		H9Bb		or		HDBb)	
	Input Cable 3:			H2Bb)	or		H6Bb		or		HABb)	or		HEBb)	
	Input Cable 4:			H3Bb)	or		H7Bb		or		HBBb)	or		HFBb)	
	Input Cable 5:			H0Be		or		H4Be		or	r			or		HCBe		
	Output Cable	A:		H0B		or		H4B		or		H8B		or		нсв		
	Output Cable I	B:		H1B		or		H5B		or		H9B		or		HDB		
	Output Cable C:		: H2B			or		H6B		or		HAB		or		HEB		
	Output Cable I	D:		H3B		or		H7B		or		HBB		or		HFB		

Hadronic positive eta tile/endcap merging

Figure A.6: Patch panel type 5 for receiver outputs for PPM_4 hadronic at positive eta

Input Cables	Signal Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
ut Ca	Cable 1		A02		A04		A06		A08		A10		A12		A14		A16
Inpu	Cable 2		A01		A03		A05		A07		A09		A11		A13		A15
	Input Cable 1:		HnG×	(or		HnZx										
	Input Cable 2:		HnGy	/	or		HnZy										
	Output Cable A:				or		HnZ		n = 0	4, 8,	С						

FCAL hadronic merging (both ends)

Figure A.7: Patch panel type 6 for receiver outputs for PPM_9 hadronic at both ends

References

- [1] L1Calo Group, Cable Mappings and Crate Layouts from Analogue Inputs to Processors, ATL-DA-ES-0036 https://edms.cern.ch/document/399348
- [2] W. E. Cleland, Receiver/Monitor System for the ATLAS Liquid Argon Calorimeter, ATL-AL-EN-0043 https://edms.cern.ch/document/347184
- [3] Eric Eisenhandler, Specification of Level-1 Receiver/Monitor System for the ATLAS Tile Calorimeter, ATL-DA-ES-0034 https://edms.cern.ch/document/390469
- [4] KIP Heidelberg Group, Specification of the Preprocessor Module, ATL-DA-ES-0024 https://edms.cern.ch/document/325928
- [5] A. R. Gillman, TileCal Patch Panel (TCPP) Specification, ATL-DA-ES-0039 https://edms.cern.ch/document/523926