

Prototype Readout Module for the ATLAS Level-1 Calorimeter Trigger Processors

P. Apostologlou, B.M. Barnett, I. Brawn, J. Edwards, C. N. P. Gee, A. Gillman, R. Hatley, V. Perera, A. a. Shah T.P. Shah *Rutherford Appleton Laboratory, Chilton, Oxon, UK*

C. Bohm, S. Hellman, S. Silverstein Department of Physics, University of Stockholm, Stockholm, Sweden

R. Achenbach, P. Hanke, W. Hinderer, D. Kaiser, E-E. Kluge, K. Meier, U. Pfeiffer, K. Schmitt, C. Schumacher, B. Stelzer *Kirchhoff-Institut für Physik, Universität Heidelberg, Heidelberg, Germany* G. Anagnostou, P. Bright-Thomas, J. Garvey, S. Hillier, G. Mahout, R. Staley, W.N. Stokes, S. Talbot P. Watkins, A. Watson

> School of Physics and Astronomy, University of Birmingham, Birmingham, UK

B. Bauss, K. Jakobs, C. Nöding, U. Schäfer, J. Thomas Institut fur Physik, Universität Mainz, Mainz, Germany

> E. Eisenhandler, M. Landon, D. Mills, E. Moyse Queen Mary, University of London, London, UK

ATLAS Level-1 Calorimeter Trigger System

Level -1 Trigger Requirements

- Provide trigger multiplicity information to the CTP:
 - e/gamma and tau/hadron
 - jets
 - missing and total Et
 - ♦ Jet-Et
- Provide Region of Interest (Rol) information to the Level-2 trigger system
- Time slice data for monitoring and diagnostics

Gilles MAHOUT

LeB 2001 – Stockholm

Slide 2

Prototype Readout Module for the ATLAS Level-1 Calorimeter Trigger Processor

Readout Driver (ROD) Requirements

- Collect data from Cluster Processor (CP) and Jet Energy (JE) Processor via HP G-links
- Data processing (zero suppressed or not)
- Error detection
- Merge and format event data
- Interface to the readout link (S-link)
- Local Monitoring of Data
- Receive TTC signals
- Interface to CTP (ROD Busy)
- Operate at level-1 accept rate (75 kHz)

Gilles MAHOUT

Prototype ROD Functions

- 4-channel (= 4 processor modules) prototype, 18 channels for the final version:
 - G-Link (HDMP-1024) Receiver
- Data FPGA:
 - Perform Zero suppression
 - Perform Parity Check
- Buffer Data in Fifos
- Controller FPGA:
 - Control G-link access
 - Merge and format Data
 - Transfer using S-Link
- Interface to TTC
- 'Spy Event Buffer' for local Monitoring
 - FPGA based buffer manager
 - > Can provide PCI interface
 - > Can implement DSP core

Gilles MAHOUT

Prototype ROD Implementation

- Triple width 6U VME
- Four Common Mezzanine card (CMC) positions
 - Receive data via G-Link CMC daughter card (from 4 processor modules)
 - Two S-Link Positions for Slice Data or Rol Data
 - One position for a commercial PMC co-processor card
- All processing and data handling carried out by FPGAs
- Flexible design: same module, via different firmwares, will handle:
 - CP RoIs JEP RoIs CP Multiplicity JEP Energy Slice
 - CP Slice Data
 JEP Slice Data
 JEP Multiplicity
 JEP Energy RoIs
- Commercial S-Link card to transfer data out
- Spy on events for monitoring
 - Buffer four events
 - Data available for a PCI Mezzanine Card
- TTCdec (clock and command) card to interface to TTC system

Gilles MAHOUT

Prototype ROD module for CP/JEP

Slide 6

Gilles MAHOUT

Gilles MAHOUT

LeB 2001 – Stockholm

Slide 7

ROD DATA Output Format

Standard ATLAS format for Events transmitted to DAQ or Level 2 via S-Link

Copy to spy buffer

Gilles MAHOU I

	Content	Туре	
	Begin of Fragment (B0F00000 Hex)	Control	
	Start of Header Marker (EEEEEEE Hex)	Data	
	Header Size (0008 Hex - number of words in the header excluding	Data	
	control word)		
	Format Version Number	Data	
	Source_ID - four byte field: [71][Crate ID][Module type][Module ID]	Data	
BCID ∫	ROD_L1ID (24 bit event)	Data	
EVENTID	ROD_BCID (12 bit BCID)	Data	
	Leve1 Trigger Type	Data	
	Detector Specific Event Type (0000000)	Data	
	Data Words (from Data Buffers)	Data	Rolor DAO
	Status Word-1	Data	
	Status Word-2	Data	data
	Status Summary [31:16]/ Number of Status elements [15:0]	Data	
	Number of data elements	Data	
	Status block position	Data	
	End of Fragment (E0F00000 Hex)	Control	
Gilles	MAHOUT LeB 2001 – Stockholm		Slide 8

First prototype ROD tests

Test Set-up

- Lab set-up using a Data Source and Sink (DSS) module
- DSS emulates CP Module (source), Rol-Builder or ReadOut Subsystem (sink)

Local Test set up

Stand alone Test Results

- DSS Firmware set for Rol (22 bits data as input)
- TTC system distributes burst of L1A: ______
- Events sent from the DSS, processed in ROD and sent back to DSS
- Events recovered and checked via S/W
- Bunch Crossing Number not checked but different data for each event of a burst
- Results:
 - Event ID increments correctly
 - Overnight test : no errors with frequencies beyond 100kHz
 - Single Slice data per event transmitted correctly

Gilles MAHOUT

Integration tests at CERN

Operation of the ROD Busy

Tek Run: 100MS/s

Sample

- Busy signal: inhibit CTP when FIFOs nearly full
- Busy threshold set to low value to check ROD performance:
 - 4 FIFOs filled with 4 Rols each
 - threshold set to 3: τ_{busy} =325 ns

Latency measurement with RolB

♦ 8 Rols, From L1A to RolB: 2625 ns

Gilles MAHOUT	Gilles MAHOUT

Combined run

With the ROS front-end only Events transmitted and checked up to 20 kHz in continuous mode Up to 660kHz in burst mode Tests with the RoIB and ROS 2 M events in burst transmitted with no errors Firmware updated ROD could drive two different outputs in parallel!

LeB 2001 – Stockholm

Slide 15

Conclusion

- ROD prototype shows feasibility of "one size fits all" concept
- Flexible design , Rol or Slice data readout, works successfully
 - Rol and slice data correctly transmitted
 - Rol data transmitted beyond Level-1 Accept trigger rate
- Integration tests have given good results but still need better understanding of the LVL1-LVL2 interface
- Firmware updated , no H/W problem
- Next steps:
 - Firmware variances
 - Soak tests
 - Complete testing with LVL1 modules, then Rolb and ROS
 - Complete 9U design (18-channel) for the final production next year.