

Commissioning Experience with the ATLAS Level-1 Calorimeter Trigger System

ATLAS Level-1 Calorimeter Trigger Collaboration

R. Achenbach¹, P. Adragna², V. Andrei¹, B.M. Barnett³, B. Bauss⁴,
M. Bendel⁴, C. Bohm⁵, J.R.A. Booth⁶, I.P. Brawn³, D.G. Charlton⁶,
C.J. Curtis⁶, A.O. Davis³, E. Eisenhandler², P.J.W. Faulkner⁶,
F. Föhlisch¹, C.N.P. Gee³, C. Geweniger¹, A.R. Gillman³, P. Hanke¹,
S. Hellman⁵, A. Hidvégi⁵, S.J. Hillier⁶, M. Johansen⁵, E.-E. Kluge¹,
M. Landon², V. Lendermann¹, K. Mahboubi¹, G. Mahout⁶, K. Meier¹,
V.J.O. Perera³, D.P.F. Prieur³, W. Qian³, S. Rieke⁴, F. Rühr¹,
D.P.C. Sankey³, U. Schäfer⁴, K. Schmitt¹, H.-C. Schultz-Coulon¹,
S. Silverstein⁵, R.J. Staley⁶, R. Stamen¹, S. Tapprogge⁴, J.P. Thomas⁶,
T. Trefzger⁴, P.M. Watkins⁶, A. Watson⁶, P. Weber¹, E.-E. Woehrling⁶

¹Kirchhoff-Institut für Physik, University of Heidelberg, Heidelberg, Germany
 ²Physics Department, Queen Mary, University of London, London, UK
 ³STFC Rutherford Appleton Laboratory, Oxon, UK
 ⁴Institut für Physik, University of Mainz, Mainz, Germany
 ⁵Fysikum, Stockholm University, Stockholm, Sweden
 ⁶School of Physics and Astronomy, University of Birmingham, Birmingham, UK

Commissioning Experience with the ATLAS Level-1 Calorimeter Trigger System

• Trigger Architecture

• Challenge of Scale

- Rationale for architecture and size
- o Implications for Installation
- Full scale crate tests

o Commissioning and Integration

- Integration into ATLAS Data Acquisition
- First signals from Calorimeters

Main motivations leading to:

- Physical Size of Connectors
 - e.g. 496 inflexible analogue cables with large connectors
- Quantity of processing
- Power consumption

o Latency

- Fewer data transmission stages
- Algorithm Environment
 - Sharing of information leads to extensive fanout/fanin

Influence of Overlapping Windows in Physics Algorithms

- Processor input is a matrix of tower energies
- Physics algorithms use 4x4 grid
 - 2-D pattern recognition
 - Applied throughout full input matrix
 - Windows overlap in both coordinates (eta and phi)
- To process each location, an outer 'environment' is required
- Each processor (module, crate) has a core of towers processed
- Extra 'environment' achieved by fanout
- Ratio of core:environment dependent on size
 - More parallel processing in smaller regions increases fanout requirements
 - Sub-dividing makes connectivity more difficult

e/gamma/tau cluster module (4x16) 64:69

Solution and implications

- Entirely Parallel Preprocessor
 - Size matches input cable connectors
 - Eight 9U VME crates
- High bandwidth digital cabling 'spaghetti' to:
- o Parallel Processor
 - Four 9U VME crates for e/gamma/tau trigger
 - Two 9U VME crates for jet/energy-sum trigger
- Necessary fanout performed via:
 - Digital cables to processors
 - ~25% of duplication required
 - In one plane (fanout in phi)
 - o Custom backplane in processor
 - o ~75% of duplication required
 - In other plane (fanout in eta)

Processor crates

Installation Reality Check: Input Analogue Cables

496 cables into 8 crates Four cables just fit front of one 9U module

Installation Reality Check: Digital Cabling into Processor Crates

Up to 1400 individual LVDS signals into one crate

More than 500 Gbit/s data input

Full Scale Crate Tests

Comprehensive tests performed 0 with all subsystems Performance scaled well 0 One new hardware problem: 0 • Processor backplane Preprocessor **Jet/Energy Processor** Cluster Processor

Backplane Problems and Status

- Dense, high bandwidth backplane
 - o Up to 1150 pins per slot
 - o About 22,000 pins in all
- After production, pin problems at ~0.01% level
 - o ie about 1-2 errors per backplane!
- Pins bent during insertion of connectors
- Currently in process of replacing bad connectors

Integration into ATLAS Data Acquisition

- Tests of output to all downstream hardware performed in situ
 - o Simple setups for the moment
- Links to Readout System and Region of Interest Builder showed no data corruption
 - o Tested at high rates
- Real-time links to Central Trigger Processor mostly fine
 - Minor problems
 - Now found and fixed

Future Plans

• More integrations

- Connect up full scale subsystems
- Further calorimeter tests
 - More channels
 - Different parts of detectors
- o Join ATLAS combined runs
 - Commissioning runs
 - o Cosmic runs
- Majority of hardware installed by mid-2007
- Will require much work to fully understand system