
A Novel Simulation and Veri�cation Approach in an
ASIC Design Process

D.Husmann, M.Keller, K.Mahboubi, U. Pfei�er, C. Schumacher

Kirchho�-Institut f�ur Physik, Universit�at Heidelberg, Germany

Abstract|We have built a fast signal-processing and read-
out ASIC (PPrAsic) for the Pre-Processor system of the AT-
LAS Level-1 Calorimeter Trigger. Our novel ASIC design
environment incorporates algorithm development with dig-
ital hardware synthesis and veri�cation. The purely digital
ASIC was designed in Verilog HDL (hardware description
language) and embedded in a system wide analog and digi-
tal simulation of implemented algorithms. We present here
our design environment and experience that we gained from
the design process.

Keywords|ASIC design ow, combined simulations, com-
plex design environment, test-vector generation.

I. Introduction

The ATLAS experiment at CERN requires a highly se-
lective trigger system with optimal e�ciency. The event
selection in ATLAS will be achieved by a three level trig-
ger system. The �rst trigger level (Level-1 Trigger) is a fast
pipelined system for the selection of rare physics processes.
It is designed to achieve an event rate reduction from
40 MHz LHC bunch-crossing rate down to the Level-1 ac-
cept rate of 75 kHz (100 kHz upgrade)[1]. This is achieved
by algorithms which work on a three-dimensional energy
map generated by the ATLAS calorimetry (Calorimeter
Trigger) and a selection based on coincidences in muon
trigger chambers (Muon Trigger). The algorithms of the
Level-1 Calorimeter Trigger have to identify `local' and
`global' energy depositions within the calorimetry. The
digital data for these algorithms are provided by the Pre-
Processor system which is located at the front-end of the
Calorimeter Trigger. It receives about 7200 analog in-
put signals (trigger towers) from the electromagnetic and
the hadronic calorimeters. The maximum latency for the
Level-1 Calorimeter Trigger is 2.0 �s. Of this, only a small
fraction (300 ns, or 12 bunch-crossings) is allowed for the
Pre-Processor ASIC, the main part of the Pre-Processor
System.

The maximum latency and the large number of analog
signals put tight constraints on the Pre-Processor system.
It has to be built as a hard-wired front-end to perform fast
signal processing on all analog input signals in parallel. The
system provides the input data for the Level-1 Calorime-
ter Trigger algorithms and it performs the readout of data
on which the Level-1 Trigger has based its decision. In
this way it has the exibility to allow tests on the trigger
performance.

An overview of the Pre-Processor ASIC and its tasks is
given in Section II. This is followed by requirements and
problems of an ASIC design process in Section III. It also
illustrates the design environment which was developed to

meet this requirements. The modules of these environment,
various simulation tools, are described and their integration
into a complex design environment is explained. Section IV
presents the documentation which attends such a design
process. Results and design experiences are mentioned in
Section V.

II. The Pre-Processor ASIC (PPrAsic)

The Pre-Processor ASIC performs signal processing on
digitized data from four trigger-tower signals. The design
is completely described in the Hardware Description Lan-
guage Verilog. The ASIC will have a power supply of 3.3 V
and will be manufactured in a 0.6 �m CMOS process. For
internal data storage of raw and processed data the ASIC
is equiped with 24 RAM blocks with a total size of 66 kbit
with an area of 14.12 mm2. This and the digital core logic
lead to a total chip area of about 60 mm2. The tasks that
the Pre-Processor system has to perform, based on its 7200
analog input signals, can be summarised as follows[2]:

� Preprocessing: The trigger algorithms have to be pro-
vided with digital data containing the deposited transverse
energy, identi�ed to a unique interaction in time (bunch-
crossing identi�cation, BCID). Two algorithms exist to
perform the BCID. One is applied to non-saturated sig-
nals and uses a �nite-impulse-response �lter and a peak-
�nder. The other is applied to saturated signals. The algo-
rithms are fed with synchronized digital data for particles
with di�erent time-of-ight from the interaction point to
the calorimeter and for di�erent cable lengths from the
calorimeter to the trigger cavern.
� Readout of event data: On each Level-1 decision the cor-
responding raw trigger data together with some samples
preceding and following the identi�ed bunch-crossing can
be read out. This is needed for diagnostic and monitoring
purposes of the performance of the trigger system. There-
fore the PPrAsic contains pipeline memories and bu�ers
to store the incoming data. To guarantee high exibility,
the ASIC has many programmable registers which can be
accessed through two serial interfaces. Each one of these
is responsible for 2 channels. In addition, optional daisy-
chaining is also foreseen.

III. The Design Environment

The requirements of the ATLAS trigger system, like op-
timal e�ciency and fast processing, make it necessary to
develop application speci�c algorithms implemented in in-
tegrated circuits. Furthermore the system complexity re-
quires compact electronics with a high level of integration.



Serial Interface

PPrASIC
algorithms

comparison

config. / setup / control

Perl scripts

1 11111 0 0 0
result

Pspice simulator

electronics
trigger-tower

PPrASIC

NC-Verilog simulator
Processing path

Ptolemy simulator

digitization

(ADC)

path to 
file

Fig. 1. Design environment used for algorithm development, hardware description and veri�cation of the Pre-Processor ASIC

In order to meet all these constraints a exible design en-
vironment was developed for the Pre-Processor ASIC. The
following list shows the requirements and di�culties that
appear in an ASIC design process mapped on the develop-
ment of the PPrAsic:

� Tools: The hardware description language and the tools
for synthesis, layout and timing analysis have to be chosen.
The tools for simulation and testing have to be chosen and
combined in an e�ective manner to a compact and exible
system. This system should also support the development
of algorithms that will be implemented in the ASIC.
� Design cycle: The number of design cycles aimed for has
to be determined. In the case of the PPrAsic the high
cost of the design and the short time for the design and
manufacture forced the decision to attempt to �nish the
project in just one design cycle. This decision requires a
very methodical and careful design process.
� Time to experiment: The tight constraints for a compact
system demand a high level of integration on Multi-Chip
Modules (MCMs). To start the design and production of
these components it is necessary to keep the ASIC devel-
opment and production short in order not to retard the
production of the �nal system.
� Code coverage: A simulation environment has to be de-
veloped that allows a complete test of the hardware de-
scription. It should show that the written code meets the
speci�cation and system requirements.
� Fault coverage: It has to be assured that the design is er-
ror free and that no timing violations have occured. There-
fore a test is needed that checks the correct behaviour of
the design and the manufactured hardware in all possible
con�gurations.
� Test of the hardware: To save design-time it is necessary
to develop a complex simulation environment that can be
utilized in all steps of the design process. Of course it
should be helpful in developing the hardware description,
but besides that it should also be applicable for the later
testing of the hardware.
� Documentation: A project that involves several designers
requires not only a complete documentation of the �nal
design, it should guarantee a detailed documentation all
along the design process.

� Software: Software that guarantees direct access to all
the hardware produced is needed. It should also allow sys-
tem integration of the hardware without losing exibility.

A. Simulation Tools

Our aim has been to provide a platform for a system-
wide simulation of implemented algorithms and their sur-
rounding electronics. With this simulation it is possible
to develop the algorithms that will be implemented on the
ASIC and to demonstrate their e�ciency. It can be used to
create vectors for the simulation of the hardware descrip-
tion during the design process. Once the ASIC is back from
its foundry, the simulation can create the test vectors and
the expected results for real operation.
Figure 1 shows the design environment. It is built up out

of three types of simulators: an analog circuit simulator
(Pspice[3]) for analog input pulse generation, a heteroge-
neous simulator for analog and digital algorithm simulation
(Ptolemy[4]), and a simulator for the hardware description
(NC-Verilog[5]). In the following the tasks of these simula-
tors will be explained in more detail:
1. Pspice simulation: This simulator is used to create re-
alistic analog input signals. Therefore it includes the com-
plete analog trigger-tower electronics and models of the
cables that connect them with the Pre-Processor system.
The simulation allows production of both saturated and
non-satureted signals. In case of the saturated signals sat-
uration can be simulated for all the parts in the trigger
tower chain where it can occur.
2. Ptolemy simulation: The Ptolemy tool from the Univer-
sity of California at Berkeley allows discrete-event as well
as synchronous data-ow modeling. This allows to build-
ing up complex simulations using modules of both types.
The modules are written with the object oriented C++ lan-
guage. To be able to check the complexity of the algorithms
and their interplay, Ptolemy was used to create a model of
the complete data path as it is implemented in the ASIC.
This allows simulation of the e�ciency of the algorithms
depending on di�erent input signals (Pspice outputs) and
under di�erent conditions including noise and time-jitter
e�ects on the signals.
The second task of the Ptolemy simulation is to produce,



in addition to the digitized input data for the PPrAsic, the
expected output data for comparison
3. NC-Verilog simulation: This simulator is needed for the
necessary checks of the correctness of the hardware descrip-
tion written in Verilog.

The necessary data exchange between the simulations is
done by Perl scripts. They glue the di�erent parts to a
exible and complex system that can be used in all the
steps of the design process.

Serial Interface

Serial Interface

Serial Interface

Serial Interface

comparison

config. / setup / control

Perl scripts

file

result

cycles

multiple

comparison

config. / setup / control

Perl scripts

file

result

result

file

Perl scripts

config. / setup / control

comparison

+ wire delays

Pspice simulator
trigger-tower
electronics

PPrASIC

digitization
(ADC)

NC-Verilog simulator
Processing path

Ptolemy simulator

PPrASIC

algorithms

path to 

1 1111 0 0 01

result

file

Perl scripts

config. / setup / control

comparison

System Requirements

layout

synthesis

Pspice simulator
trigger-tower
electronics

PPrASIC

digitization
(ADC)

NC-Verilog simulator
Processing path

Ptolemy simulator

PPrASIC

algorithms

path to 

1 1111 0 0 01

+ gate delays

Pspice simulator
trigger-tower
electronics

PPrASIC

digitization
(ADC)

NC-Verilog simulator
Processing path

Ptolemy simulator

PPrASIC

algorithms

path to 

1 1111 0 0 01

Pspice simulator
trigger-tower
electronics

PPrASIC

digitization
(ADC)

NC-Verilog simulator
Processing path

Ptolemy simulator

PPrASIC

algorithms

path to 

1 1111 0 0 01

ASIC test

code

one cycle

Manufacturing

Equiping the MCM

Fig. 2. Design ow of the PPrAsic. The veri�cation process is
illustrated on each level of the design process, where di�erent
timing information is present.

B. Design Flow

The combination between Pspice, Ptolemy and NC-
Verilog simulation allows an automatic test for multiple
con�gurations of the PPrAsic. The digitized data that
are produced by the Ptolemy simulation are fed into the
NC-Verilog simulation. Then the results from both simu-
lations are compared automatically by a Verilog module.
This builds up a exible system for automatic tests that
can be utilized in all four steps of the design ow as shown
in �gure 2.
In the �rst step the simulation environment is used to

develop the algorithms for the BCID and their interplay.
Then it can be used to check the matching of the hardware
description with the simulated algorithms. The check of

the netlist, which includes the gate delays, and the layout,
which includes also wire delays, can also be done with the
simulation environment. After the �rst three steps, which
are passed through several times, the manufacture will take
place. The simulation environment has the exibility to be
useful also in the real hardware test. It produces the input
vectors and the expected output data for speci�c test runs.

C. Simulation Setup

To run the Ptolemy and the NC-Verilog simulation in
parallel for an automatic comparison it has to be guaran-
teed that they work on the same PPrAsic con�guration.
Therefore a Perl script is used. It uses as input ASCII
�les where the register de�nition, the con�guration of the
registers and the default values of the registers are stored.
Then it creates the right data stream which con�gures the
PPrAsic through its serial interface. The function of the
script is illustrated into �gure 3.
The system integration is done by software that was de-

veloped in Heidelberg. It is called Hardware Diagnostic,
Monitoring and Control Software (HDMC)[6] and its task
is to access all the hardware that is produced for the sys-
tem. It generates the register de�nition for the hardware
description of the ASIC and provides a direct access to
them and the memories of the produced hardware.

definition

Perl script

configuration files

for Ptolemy

1 11111 0 0 0

register

Data-stream to

default

configuration
register values

values

HDMC Software

text file

text files

serial interface

Fig. 3. The creation of stimulus vectors for the serial interface of the
PPrAsic and the synchronous production of the con�guration �les
for the Ptolemy simulation

IV. Documentation

The development of an ASIC by di�erent designers at
the same time makes it necessary to agree about some con-
ventions which allow building up a design from pieces done
by di�erent people. This includes also the aspect of design
re-use, where design blocks orginating from other projects
are imported. The use of appropriate conventions mini-
mizes the e�ort to �t these blocks into a design. It also fa-
cilitates the introduction of new designers, which can pro�t
from the experiences on which these conventions are based.
Besides these necessities all the tools and procedures

used for the PPrAsic design and all information about de-
sign entry, synthesis and layout have to be described. All



this is done by a document called Pre-Processor Asic De-
sign Guide[7]. It also includes all the information about
the simulation tools and their interactions.
A design as exible and complex as the PPrAsic needs

to be very well described in order to allow, years after the
design process, faultless operation by di�erent people than
the designers. All the information about the design itself
with registers, input and output pins and its internal pro-
tocols have to be explained in detail. It is also necessary
to describe the correct handling of the serial interface and
the Jtag interface as well as the functioning of the readout
and the control logic. All this is done in the documentaion
Pre-Processor Asic User and Reference Manual [8]. In ad-
dition to that infomation the documentation describes also
the working of the algorithms used for the bunch-crossing
identi�cation.

Fig. 4. A screenshot of the web interface of the Concurrent Version
System

A. Code Managment

Many designers working on the same code simultane-
ously leads to the necessity of documentation which follows
the design process along the way. It has to handle di�erent
versions of the same �les edited by di�erent designers. This
is done by the Concurrent Version System (CVS)[9]. This
system holds the code in a central database called repos-
itory. If someone wants to edit the code he checks out a
local copy to his disk. After editing he commits changes
back to a repository adding a line commenting on the rea-
son of the changes. CVS takes care of merging �les and
resolving conicts arising from di�erent people editing the
same piece of code. It also keeps tracks of older versions. If
changes are commited, no data are deleted. This way the

designer can switch back to an older version if he likes and
he can access the complete history of all the changes that
lead to the actual version.
The fact that the ATLAS collaboration has members in

di�erent institutes requires an easy way of accessing the
status of the design from outside. Therefore CVS allows
colleagues who are directly involved in the process to ac-
cess CVS from outside with rights of changing the code
and uploading it. For other people who want to keep in-
formed about the design process a web interface[10] exists
that documents the complete history of the code. Figure 4
shows a screenshot of this web interface.

B. The Logging of Simulations

To keep the di�erent designers informed about the simu-
lations that have been done and their results, a Perl script
was developed which creates a log-�le for each simulation.
After each simulation the designer is asked to enter a short
line which summarizes the aim of the simulation and a
short text describing the expected output vectors of the
simulation. This is stored together with all the necessary
stimulus �les to set up the simulation and the complete
output of it into a log �le. The log�les can be accessed
via a graphical interface which gives the designers a com-
plete overview about the simulations done and their code
coverage.

pipeline memoriesrams for look-up tables standard cell logic

Fig. 5. The �nal layout of the PPrAsic. The dark areas are the
memories

V. Results and Design Experience

The design environment described was used for the de-
sign of the PPrAsic. It has helped to meet the require-



ments and to manage the ASIC design process. It was suc-
cessfully used to develop the integrated BCID algorithms.
Therefore, the design environment combined the di�erent
neccessary simulators into one exible system. The system
showed its usefulness in all the steps of the design ow,
from the code generation and veri�cation over the netlist
to the �nal layout. It was also used to prepare the chip
test. With the design environment developed it was possi-
ble to save designer resources. The �nal PPrAsic could be
completed in one fast design cycle. The requirements for a
project with many designers were reached by complex code
management based on the Concurrent Version System.
The �nal design consists of 34,000 standard cells, 66 kbit

RAM and has a size of about 60 mm2. A picture of the
�nal layout is shown in �gure 5.

References

[1] ATLAS Level-1 Trigger Group, ATLAS First-Level
Trigger Technical Design Report, ATLAS TDR-12,
CERN/LHCC/98-14, CERN, Geneva 24 June 1998.
http://atlasinfo.cern.ch/Atlas/GROUPS/DAQTRIG/TDR/
tdr.html

[2] U. Pfei�er et al., ATLAS Level-1 Calorimeter Trigger System
Architecture, Fourth Workshop on Electronics for LHC Experi-
ments, CERN/LHC/98-36, Rome, Italy 21-25 September 1998.
http://wwwasic.kip.uni-heidelberg.de/atlas/publications.html

[3] Pspice V9 \Mixed A/D circuit simulator," Orcad,
http://www.orcad.de

[4] Ptolemy 0.7.1 \Heterogeneous Modeling And Design," University
of California at Berkeley, http://ptolemy.eecs.berkeley.edu

[5] NC-Verilog Cadence Design Systems Inc.,
http://www.cadence.com

[6] C. Schumacher, \Hardware Diagnostic, Monitoring and Con-
trol Software", Universit�at Heidelberg, http://wwwasic.kip.uni-
heidelberg.de/atlas/projects/hdmc.html

[7] D. Husmann, M. Keller, K. Mahboubi, C. Schumacher, Pre-

Processor Asic Design Guide, Universit�at Heidelberg, 2000.
http://wwwasic.kip.uni-heidelberg.de/atlas/docs/index.html

[8] D. Husmann, M. Keller, K. Mahboubi, C. Schu-
macher, Pre-Processor Asic User and Reference Man-
ual, Universit�at Heidelberg, 2000. http://wwwasic.kip.uni-
heidelberg.de/atlas/docs/index.html

[9] \Concurrent Version System", http://www.cvshome.org
[10] The web interface is reachable under: http://wwwasic.kip.uni-

heidelberg.de/cgi-bin/cvsweb.cgi


