

Eric Eisenhandler (Queen Mary, University of London)

Eric Eisenhandler • IEEE-NSS • Dresden • 22 October 2008

University of Heidelberg

GUTENBERG NIVERSITÄT University of Mainz

STFC Rutherford Appleton Laboratory

ATLAS Level-1 Trigger

Level-1

- Custom electronics
 - ASICs and FPGAs
- Calorimeters and Muon Detectors
 - reduced granularity
- Total latency < 2.5 μs
 - including transmission delays
- Rate reduction:
 40 MHz bunch-crossings → 75(100) kHz

Level-2 and Event Filter (L3)

- CPU farms
- All detectors
- Full granularity
- Regions of Interest
- Rate reduction:

75(100) kHz → 200 Hz

Level-1 Calorimeter Trigger ("L1Calo")

Features

- ~1 µs fixed latency
- Pipeline processing
- Massive parallelism
 ~300 Gbyte/s input
- FPGA-based only one L1Calospecific ASIC type
- Complex connectivity overlapping slidingwindow algorithms
- Multi-purpose modules CMM, ROD, backplane

PreProcessor

- Analogue Receivers
 - Variable-gain amplifier
 - $\bullet \textbf{\textit{E}} \rightarrow \textbf{\textit{E}}_{T} \text{ conversion}$
 - Main energy calibration
- Digitization
 - •40 MHz, 10-bit flash-ADC
 - •0.25 GeV/count
 - Timing at nanosecond level
- Bunch-crossing ID
 - Assign to correct bunchcrossing (including saturated)
 - Finite-impulse-response filter
 - Peak finder
- Look-up Table
 - Pedestal subtraction
 - Noise suppression
 - Final energy calibration
 - •8-bit output for algorithms
 - Deal with saturated pulses
 - Turn off bad channels

4-channel Multi-Chip Module (16 per PreProcessor Module)

¹ of 8 PreProcessor crates

- 4 crates, 14 Cluster Processor Modules per crate
- Algorithm windows slide and overlap
- 8 e/γ and 8 τ (or e/γ) threshold sets, each consisting of: Trigger towers
 - core *E*_T cluster threshold
 - electromagnetic isolation E_{T} threshold
 - hadronic isolation E_T threshold(s)
- Defines Regions-of-Interest for Level-2
- Multiplicities for the 16 threshold sets summed by two Common Merger Modules per crate
- Data exchange handled by custom backplane:
 - fan-in/fan-out between neighbouring modules
 - 'hit' multiplicities to Common Merger Modules

Jet/Energy-sum Processor (JEP)

- 2 crates, 16 Jet/Energy Modules per crate
- Algorithm windows slide and overlap
- 8 jet threshold sets, each consisting of:
 - jet *E*_T threshold
 - jet window size
 - can also set 4 thresholds for forward jets
- Defines Regions-of-Interest (Rols) for Level-2
- Multiplicities for the 8 jet thresholds summed by one Common Merger Module per crate
- Other CMM handles transverse-energy sums:
 - 8 missing-*E*_T thresholds
 - 4 total-*E*_T thresholds
 - 4 total-jet-*E*_T thresholds
- Data exchanges via custom backplane:
 - fan-in/fan-out between neighbouring modules
 - multiplicities & sums to Common Merger Modules

Jet elements 0.2×0.2 in $\eta - \phi$ Window sizes: 0.4×0.4 0.6×0.6 0.8×0.8

1 of 2 Jet/Energy-sum Processor crates

6

Analogue and Digital Links

- Analogue input calorimeter signals
 - 16-way twisted-pair cables stiff and difficult to work with
- Digital links from PreProcessor to Processors (LVDS)
 - ~1900 4-channel 400 Mbit/s cables
- In-crate Processor signals
 - High-density custom backplane
 - Used for both CP and JEP
 - ~1150 pins per slot, ~22,000 per crate
 - Initial problems with bent pins now fixed, but requires careful module and cable insertion
- Readout to data acquisition system
 - 800 Mbit/s optical fibres

LVDS link cables

 Overall, few errors after installation, and now a tiny number (<< 1%)

CP and **JEP** high-density custom backplane

1 of 2 Readout Driver crates, with fibre inputs

Pedestals and Noise

Phi

'n

- FADC pedestal values
 - Set to nominal 40 counts by DAC
- Noise
 - (FADC is 0.25 GeV E_{T} per count)
 - Expected trigger-tower r.m.s. noise
 E ~ 0.4–0.5 GeV *that is what we see*
 - > 99% of channels behave correctly
 - Currently have noise thresholds of ~1 GeV E_T in look-up table
 - This produces trigger rates (mostly cosmics, not noise) of:
 - e/γ, 3 GeV threshold: 1 Hz
 - τ and jet, 5 GeV thresholds: 4 Hz $_2$
 - These thresholds are much lower than those used for physics

Timing: Analogue and Digital

9

- Coarse timing at bunch-crossing level (40 MHz)
 - Calorimeter input signals
 - must compensate for cable lengths, etc.
 - Internal digital signals
 - 40 MHz, but many backplane signals 80 or 160 MHz
 - Readout pointers to FIFOs
 - Can set up all of these using calorimeter pulsers, but input signals must be iterated with beam
- Fine timing, at nanosecond level
 - FADC strobe adjustable in 1 ns steps
 - Need timing to ~ few ns, for accurate energy and bunch-crossing assignment
 - Can do 1 ns fine scans with pulsers (top)
 - For beam, timing alters and pulses are different sizes – fit Gauss/Landau to single events (middle)
 - Works well compare the two methods (bottom)

Need beam for 1–2 days to get final settings
 Eric Eisenhandler • IEEE-NSS • Dresden • 22 October 2008

- Calibration done using calorimeter charge-injection systems
- Plots show full calorimeter readout vs. L1Calo readout, for cosmic muons
 - Cosmics not synchronous with LHC clock, so energy resolution not ideal
- Calibration work continues

Hadronic trigger-tower energy spectrum

First Beams in LHC

First ATLAS event with circulating beam in LHC – triggered by L1Calo!

- L1Calo is installed, and is working well and reliably
 - Integrated with calorimeters and data acquisition
 - Extensively used to provide cosmic triggers for setting up other parts of ATLAS
 - Number of problems very small
- Timing and energy calibration progressing well
 - Using pulsers and cosmics
 - Final tuning needs beam data
- Waiting for first collisions ...

For more details: R. Achenbach et al., The ATLAS Level-1 Calorimeter Trigger, 2008_JINST_3_P03001.