

VPTs for the CMS experiment

B W Kennedy CCLRC Rutherford Appleton Laboratory

St Petersburg, 26 April 2005

- 1. Description of CMS Electromagnetic Calorimeter
- 2. Experimental conditions and challenges
- 3. Selection of Vacuum PhotoTriodes (VPTs)
- 4. Experience with VPTs from RIE
- 5. Conclusion

The CMS Electromagnetic calorimeter

Details of the SuperCrystal

Basic unit –Supercrystal 5×5 array of crystals Carbon-fibre alveolar PbWO₄ crystals Radiation hard $X_0 = 8.9 \text{ mm}$ **Fast scintillation** 90% light in 100ns Mechanically fragile Low light yield ~50 y/MeV

Challenges for ECAL photodetector

High radiation environment

Dose is strong function of angle to proton beams Barrel: Up to 4 kGy in 10 years of LHC running Endcap: 4-200 kGy in 10 years

Fast response required

Interval between LHC beam crossings is only 25ns

Low light yield from PbWO₄

Approximately 50 photons/MeV \Rightarrow need device with gain

CMS choices

Barrel – Avalanche PhotoDiodes

Endcap – Vacuum PhotoTriodes (VPTs)

Structure of Vacuum PhotoTriode

Specification for CMS VPTs

Radiation tolerance

Less than 10% loss in output after 20 kGy Quantum efficiency p $p \ge 15\%$ for light of wavelength 420nm Gain g at zero magnetic field $g \ge 7$ Magnetic field response

Loss in yield at 4T < 15% with respect to 0TStable (±10%) at angles up to 26° to magnetic field

Selection of VPTs

Prototypes supplied by several manufacturers

- **Electron Tubes**
- Hamamatsu
- Meltz
- Photonis
- **Research Institute Electron**

Testing and evaluation up to 1999 Most manufacturers were able to meet specifications Tendering for contract in 1999 Successful tender from RIE to supply 15500 VPTs

Typical response of prototype VPTs

VPT response vs angle in 1.8T magnetic field

VPT response vs field at 15°

Variation of gain with applied voltage

Radiation tolerance of faceplate glass

γ dose varies
strongly with angle.
All VPT faceplate
glass tested to 20 kGy at
Brunel University.
Glass batch accepted if
<10% transmission loss

(convoluted over PbWO₄ spectrum) after 20kGy.

VPT testing procedure

Two UK testing facilities Up to 1.8T at RAL All VPTs, variable angle 4T system at Brunel University Sample testing (10%), fixed angle

Measurements on 10000 VPTs

Response measured at RAL in 1.8T magnetic field.

Consistent VPT response from batch to batch.

B W Kennedy, CCLRC Rutherford Appleton Laboratory

Correlation between 0T measurements at RIE and 1.8T measurements at RAL

Measured at Brunel University. VPT at 15° to magnetic field.

Resolution of problems

Regular meetings between RIE and CMS groups at CERN, RAL, RIE.

Some problems inevitable in long production run.

Most significant – discharges seen in small fraction VPTs.

Exchange of information between CMS groups and RIE, and careful investigation by RIE experts

⇒ improvement in manufacturing procedure to reduce number of VPTs with discharges.

- VPTs supplied by RIE meet needs of the CMS experiment.
- Delivery of VPTs is on schedule.
- Regular and open meetings between CMS and RIE enable problems to be solved.
- We look forward to the successful conclusion of the contract in February 2006.

