Preface

Whilst working at the Rutherford Appleton Laboratory the majority of my work has been based in scientific programming, but I have also had opportunities to work with hardware based experiments.

My main project has been purely theoretical work involving the calibration of a major subsystem of the Compact Muon Solenoid detector. I have, however, spent significant time helping with other projects. I was eager to include the details of such activities within my report while not to fragment a concise write up of my calibration work. I have therefore included these details in the appendix as a separate summary of the skills I gained and a short background of the science involved.

Special Thanks To Dr. B Kennedy

[image: image1.png]
Interim Placement Report

Background (Hardware)

The work I have been carrying out is for the Compact Muon Solenoid (CMS) group of the Particle Physics Department, Rutherford Appleton Lab.

The Compact Muon Solenoid (CMS) is a next-generation particle detector for the Large Hadron Collider currently being built at CERN. The design and construction of this huge and complex machine requires a large collaboration, counting 30 countries and 150 institutes. CMS is tailored to test modern theories of Particle Physics, in particular the Higgs theory and Supersymmetry..

LHC and CMS will confirm our understanding of fundamental Physics or reveal new aspects of the Universe.

Fig.1

[image: image40.png][image: image41.png]
 Fig 1

[image: image55.bmp]
Fig.2

The main elements of CMS

1. The beam pipe is a continuation of the LHC ring extending into the detector and bringing the opposing accelerated beams to the collision point at the centre of the detector.

2. The Tracker reconstitutes the path of charged particles using ionisation on planes of silicon. The charge and momentum can be reconstituted from the curvature of the track in the magnetic field. The accurate measurements of momentum and tracks of charged particles are essential for particle track reconstruction and CMS physics in general.

3. The electromagnetic calorimeter (ECAL) stops photons and electrons, measuring their position and energy. In CMS, the design is based on scintillating crystals, which give a light output proportional to the energy of the incident particle. The light output is then measured by photodetectors, Vacuum PhotoTriodes (VPT) and relayed to readout electronics as an electric signal. Figure 3 is a picture of 2 individual crystals with attached VPTs. In the Endcaps, individual crystals with the photodetectors are then assembled in 5*5 arrays (see figure 4), called supercrystals, which are the basic building block of the ECAL Endcap.

[image: image42.png][image: image43.wmf]ú

û

ù

ê

ë

é

÷

ø

ö

ç

è

æ

-

=

2

tan

ln

q

dity

pseudorapi

[image: image44.wmf]÷

÷

ø

ö

ç

ç

è

æ

-

+

÷

ø

ö

ç

è

æ

=

z

z

p

E

p

E

rapidity

ln

2

1

[image: image2.png]
[image: image45.wmf])

(

2

2

0

y

z

+

[image: image3.png]
The quality of the ECAL is very important to CMS, as it would be used to detect the Higgs Boson if it’s mass is low (<~180GeV). This is because in this mass range, the Higgs Boson preferentially decays to 2 highly energetic photons, which are detected by the ECAL

4. The Hadron calorimeter (HCAL) stops hadrons, measuring their position and energy. It will be particularly important to detect quarks, gluons and neutrinos through missing energy. Missing energy is also a very good signature for supersymmetry physics. The technology is based on sandwiches of copper and plastic scintillator tiles.

5. The superconducting solenoid magnet provides a uniform magnetic field of 4 Tesla. Its design consists of a superconducting coil, a magnet yoke, a vacuum tank and ancillaries such as cryogenics.

The CMS magnet is a very ambitious project, as it will be the largest superconducting magnet in the world. This is the most expensive single part of the CMS detector.

6. The muon chambers stop and identifies muons, measuring momentum in association with the tracker. The design is based on 3 types of gaseous particle detectors: “Cathode strip chambers”, “Drift Tubes” and “Resistive Parallel Plate Chambers”. Tracks are reconstituted by measurement of ionisation of a gas, as the muons cross the chambers. The momentum is deduced from the tracks as the muons pass several points in the system.

Triggering

At LHC, the protons beams will cross 40,000,000 times per second, with approximately 25 protons colliding at each crossing. Recording all the data from CMS would be equivalent to 10,000 Encyclopaedia Britannica for every second of operation.

The important task of the trigger is to select the most interesting events out of these millions, typically 100 per second, for storage and further analysis. The trigger system in CMS is based on two levels:

Level 1 trigger which performs simple tests at very high speed and Level 2 which performs more advanced tests to decide whether to store the data.

Background (Theory)

Matter is currently thought to compose of two groups of particles (Fig 6):

Fig. 6
[image: image46.wmf]24

1

-

=

pq

d

[image: image47.wmf]1

=

ij

d

What was previously thought to be fundamental particles (protons and neutrons) has, apart from the electron, been found to be composed of a combination of quarks.

Proton = 2 “up” quarks and 1 “down” quark

Neutron = 1 “up” quark and 2 “down” quarks

Such composite particles are called Fermions and have half-integer spins (1/2, 3/2, etc.) There is another class of particle called bosons which have integer spin (1, 2, 3, etc.) The Fermions interact with each other using bosons. These bosons are thought to mediate the four fundamental forces in nature.

Force
Particle
Range

Electromagnetic
Photon
Infinite

Gravitational
Graviton
Infinite

Strong
Gluon
Finite

Weak
W,Z bosons
Finite

Physicists believe that these four forces at high energy could unite.

[image: image48.wmf](

)

ij

dq

=

/

In the 1930’s Yukawa proposed a massive particle that could explain the mediation of the weak force. It wasn’t until the late 1950’s that this idea was developed further. The massive, charged boson W+ and W- were postulated followed by a neutral Z boson that would unite the electromagnetic and the weak force into what was to be called electroweak force. These particles were discovered at CERN in early 80’s.

This discovery certainly offered some credence to theories that offered complete unification of all forces. However, this discovery raised further questions. Why did the W and Z bosons become massive in our low energy world, while photons remained massless? This question of the origin of mass led to the postulation of another particle, the Higgs boson. Mediator of the Higgs field, the Higgs Boson would interact with all matter that would otherwise travel at the speed of light!

Although possibly a solution, the standard model of particle physics predicted a quadratically divergent mass. The standard model was not enough and new theories were needed. Supersymmetry assigned Supersymmetric partners to each particle (Fig. 7), which resolved the issue.

Fig. 7

[image: image49.png]
The LHC will be designed to search for both the Higgs boson and the shadow particles of supersymmetry theory. It is hoped that LHC will be advancing science by 2005.

Introduction

My work has been involved in calibrating the crystal electromagnetic calorimeter (Ecal) endcap. This part of the detector can be seen in Fig. 8. This system is made up of lead tungstate crystals that are in five by five arrangements called supercrytals. As the electron / photon enters a crystal, a shower of electrons and photons emanate from this region. At the end of each crystal is a Vacuum photo triode (VPT) that will detect photons from this shower. The response from this detector is proportional to the energy of the incident particle.

Fig. 8

[image: image50.png][image: image51.png][image: image4.png]
To make any use of the signal from a VPT, it must be calibrated. The product of the correct calibration constant and output signal will give you the true energy. To find this constant you need events of known energies. Normally, the tracker can determine the energy of the event. Composed of silicon layers, this central part of the detector gives energy and position of a particle as it spirals in a strong magnetic field. Any particles that pass through the tracker and in to one of the endcap crystals have known energy and can therefore be used for calibrating the VPT’s in that regions. Unfortunately, due to constraints, there is a region of the ecal endcap that will not covered by the tracker, making it impossible to calibrate using this standard method.

The purpose of this project is to investigate the possibility of using certain Z(
[image: image5.wmf]-

+

e

e

events for calibrating this region. A usable event would require one particle to enter the region of the endcap covered by the tracker (green region), while the other particle would enter our uncalibrated region (red region). Through conservation laws we would then have an event that would be useful (see Fig. 9).

Fig. 9

[image: image52.png][image: image53.png][image: image6.png]
*What is rapidity?

Rapidity is a very useful unit for dealing with relativistic particles because it greatly simplifies velocity addition. Although there is rapidity and pseudo rapidity, for a massless particle, such as a photon, they are the same. Below is a diagram detailing the unit convention used in particle physics:

[image: image54.png]
[image: image7.png]
Tools

GEANT

The entirety of this work has been performed using data from a computer simulation of the CMS. This has been constructed using GEANT. This is a collection of programs and subroutines that have been developed and modified over a quarter of a century. This simulator now uses all the known laws of the standard model and can operate them within a user-defined detector. The complete physical layout of every part of the CMS can be accurately replicated.

Physics Analysis Workstation (PAW)

I have used this command-based software for running Fortran routines and analysing the resulting data. The advantage of this software is the ability to implement Fortran code within a routine of PAW commands. The vectors / arrays created in PAW are global and therefore can be used in separate Fortran programs. This makes it a very versatile platform for data reduction and analysis.

The bulk of work was conducted on ntuples of data from the detector simulation.
Work So Far

Initially it was necessary for us to have an idea of how many events would be useful for the proposed method of calibration. This was investigated using a set of simulation data of 10,000 events at colliding beam energies of 28,500 Gev. By using the Fortran routine evtcount.f annotated in appendix B2, the 10,000 events were looked at in turn. There were several ‘cuts’ (conditions) that were placed upon each event, in order to determine whether it was useful. The three main conditions were that:

(The particle we were looking at was an electron or positron

(The energy of the particle exceeded 20Gev *

(One particle entered endcap at rapidity greater than 2.4 and less then 2.6 (red region), while its partner entered at rapidity less than 2.4 (green region).

After running all the data through this routine, it was found that only 17 events met the criteria. It thus became apparent that ‘direct-strike’ calibration for each crystal was an unlikely prospect!

It was clear that more consideration would be needed in order to be less wasteful of these events. A possible solution would be to examine the shape of the energy shower that emanated from the target crystal. This shape, if regular, could allow us to determine the relative calibration constants of the surrounding crystals. In a hand waving way, this would increase our target to just a super-crystal.

To decide whether the energy shower was consistently the same, irrespective of location within the supercrystal, new data was produced. This involved 25 separate ‘jobs’ that were given to the simulator. Each set was generated by firing 300Gev photons at each of the 25 crystals, within a supercrystal, allowing us to examine how the energy spread out. Appendix B2 contains espread.f, the annotated program used to do this.

On the next page there are plots generated from the resulting data. The vertical axis represents log(energy).

Log (Energy fraction) Versus Position In supercrystal

Fig. 11

[image: image8.jpg]
Not all plots have been displayed, although all 25 did indicate a smooth, continuous drop in energy when moving away from the targeted crystal. These energy showers gave a good indication that the shower spread out predictably, irrespective of which crystal it emanated from.

Whether these energy fractions were consistent enough was determined when we examined the standard error of the mean energy in each crystal for all 25 data sets.

A preliminary look at the standard error produced extremely high values. This encouraged us to study how much variation there was in the high energy, target crystal.

Fig. 12

[image: image9.jpg]
Below are the final plots of standard error as a percentage of the mean, versus position in the supecrystal. Position of targeted crystal indicated in red.

Fig. 13

[image: image10.jpg]
The results never gave a standard error below 3.5% for around 400 events. Although each data set contained 1000 events, a number of these events would be discounted on account of the photon missing the targeted crystal and low transverse momentum.

The fact that photons would regularly make ‘glancing blows’, or strike the edge of a crystal, was introducing much of the variation seen in the energy shower. This effect can be seen from Fig. 13, where we can see the standard error rise in the neighbours of the targeted crystal, before falling and rising again. The secondary feature at (150 GeV in Fig. 12 is also indicative of these events.

These high variations forced the adoption of a more refined method. One that involved fitting a gaussian to our energy distribution, centred on the exact location within the crystal that the photon struck. Such a gaussian could hopefully provide more accurate theoretical values of the fraction of energy that entered surrounding crystals.

By minimising a function that represents the difference between our real fraction, (i.e. the product of our calibration constant and detector response), and this deduced fraction, we could obtain an expression which over a number of iterations, could converge on the correct value for our calibration constants.

The program gauss.f (Append B1.2) produces the theoretical fractions. This is basically an integration routine that that looks at an array of points within the crystal and calculates the value of the gaussian. By summing up these points, we can obtain the volume of this 2D gaussian within the limits of a specific crystal. You can change the accuracy by increasing or decreasing the number of points within your array. This is performed for each event and produces slightly different results because each time the photon is hitting a different part of the crystal.

The standard deviation of our gaussian was determined from a set of 1000 events where the photon struck exactly the same place. By used espread.f along with a fitting routine, we could get an accurate value of standard deviation for the energy shower.

By looking at Fig. 14 you can see that each supercrystal was fixed in z at the top edge, but tilted at angle to face the target area. This complicated the matter of the integration limits.

Fig. 14

[image: image11.png]

This meant that the crystal width (as it appears to the z-plane) effectively stretch out as you moved up the y-axis. To keep track of these values, the following relation was devised and implemented in a subroutine of gauss.f called getlimits (append B2).

[image: image12.wmf](

)

q

Cos

y

y

×

=

¢

[image: image13.wmf](

)

)

(

2

2

0

y

z

z

Cos

o

+

=

q

[image: image14.wmf]÷

÷

ø

ö

ç

ç

è

æ

+

×

=

¢

\

)

(

2

2

0

y

z

z

y

y

o

[image: image15.wmf]÷

÷

ø

ö

ç

ç

è

æ

+

¢

=

\

o

z

y

z

y

y

)

(

2

2

0

The symmetry of the endcap allows us to use the same formula for x.

The mathematical methods that have been developed are detailed in Appendix A. Both of them employ an iterative technique that looks at a particular crystal at a time. To test these methods of calibration the energies for a set of data has been offset by random factors. These factors are between 0.9 and 1.1, comparable to the variation that is expected.

When applying the methods, the calibration constants either diverged, or converged to wrong values. This has been traced back to gauss.f (Appendix B2). It is currently giving a Gaussian distribution of larger standard deviation than is inputted in the script . This bug has yet to be rectified.

Appendix

A (Mathematical Methods for calibration)

Method 1.1

Let us start with the following function that formulates the difference between real and observed energy values for the targeted and surrounding crystals:

[image: image16.wmf]å

å

ú

û

ù

ê

ë

é

-

+

-

=

n

y

x

y

x

y

x

y

x

xy

xy

xy

xy

A

p

c

f

A

p

c

f

S

2

1

1

1

1

1

1

)

1

1

(

2

)

(

)

(

Where

Cxy is calibration constant of crystals

Pxy is “response” from system

Fxy(r) is theoretical fraction of energy in crystal (x,y) for photon incident

 at r, previously calculated by gauss.f.

[image: image17.wmf]

[image: image18.wmf]å

)

1

1

(

y

x

xy

indicates summation over all crystals except targeted crystal x1y1.

[image: image19.wmf]å

n

 indicates summation over n events.

and

[image: image20.wmf]å

=

xy

xy

xy

p

c

A

So, to minimise this function w.r.t Cxy,

[image: image21.wmf]å

å

ú

ú

û

ù

ê

ê

ë

é

-

¶

¶

×

×

-

×

+

¶

¶

×

×

-

×

=

¶

¶

Þ

n

y

x

xy

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

xy

xy

xy

xy

xy

y

x

A

p

c

A

A

p

c

A

p

c

f

c

A

A

p

c

A

p

c

f

c

S

)

1

1

(

1

1

1

1

2

1

1

1

1

1

1

1

1

1

1

1

1

2

1

1

)

(

)

(

2

)

(

2

[image: image22.wmf]å

å

ú

û

ù

ê

ë

é

-

×

×

-

×

+

×

×

-

×

=

¶

¶

Þ

n

y

x

xy

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

xy

xy

xy

xy

xy

y

x

A

p

p

A

p

c

A

p

c

f

p

A

p

c

A

p

c

f

c

S

)

1

1

(

1

1

1

1

2

1

1

1

1

1

1

1

1

1

1

1

1

2

1

1

)

(

)

(

2

)

(

2

So, combining into a term of full summation over the crytsal,

[image: image23.wmf]å

å

ú

û

ù

ê

ë

é

×

-

-

×

×

-

=

¶

¶

Þ

n

xy

y

x

y

x

y

x

y

x

y

x

xy

xy

xy

xy

xy

y

x

A

p

A

p

c

f

p

A

p

c

A

p

c

f

c

S

1

1

1

1

1

1

1

1

1

1

2

1

1

2

)

(

)

(

2

[image: image24.wmf]å

å

ú

ú

û

ù

ê

ê

ë

é

-

-

×

-

=

¶

¶

Þ

n

xy

y

x

y

x

y

x

xy

xy

xy

xy

xy

y

x

y

x

A

p

c

f

A

p

c

A

p

c

f

A

p

c

S

)

(

)

(

2

1

1

1

1

1

1

1

1

1

1

 = 0 (at minima)

[image: image25.wmf]å

å

å

ú

û

ù

ê

ë

é

×

-

=

-

Þ

n

n

xy

xy

xy

xy

xy

xy

y

x

y

x

y

x

A

p

c

A

p

c

f

A

p

c

f

)

(

)

(

1

1

1

1

1

1

[image: image26.wmf]å

å

å

å

ú

û

ù

ê

ë

é

×

-

-

=

Þ

n

xy

xy

xy

xy

xy

xy

y

x

n

n

y

x

y

x

A

p

c

A

p

c

f

f

A

p

c

)

(

1

1

1

1

1

1

[image: image27.wmf]å

å

å

å

å

ú

û

ù

ê

ë

é

×

-

-

=

\

n

y

x

n

xy

xy

xy

xy

xy

xy

n

y

x

y

x

n

y

x

A

p

A

p

c

A

p

c

f

A

p

f

c

1

1

1

1

1

1

1

1

)

(

The above formula is implemented in appendix B2 in a routine called method1.f.

Method 1.2

Follwing method contains the same terms as method 1, however notation has been modified to make equations neater, and hopefully easier to understand.

r – response

c – calibration constant

(- theoretical fraction produced from gauss.f
ij- target crystal

pq-all crystals

Th is method starts the same as before, minimising the difference between real and observed energy. There is however an additional expression that introduces a parameter d*.

Defining the fuction:

[image: image28.wmf]å

-

=

ev

ij

ij

ij

f

S

2

2

)

(

f

[image: image29.wmf]å

¶

¶

-

=

¶

¶

ev

ij

ij

ij

x

f

f

x

S

)

(

2

2

f

where

[image: image30.wmf]å

=

pq

pq

pq

ij

ij

ij

r

c

r

c

f

)

(

and

[image: image31.wmf]dx

c

c

ij

+

=

0

*

So, by substituting (2) and (3) into (1),

[image: image32.wmf]å

å

å

×

÷

÷

÷

ø

ö

ç

ç

ç

è

æ

-

=

¶

¶

Þ

pq

pq

pq

ij

ij

ev

pq

pq

pq

ij

ij

ij

ij

r

c

r

d

r

c

r

c

x

S

)

(

)

(

2

2

f

[image: image33.wmf]å

å

å

×

÷

÷

÷

ø

ö

ç

ç

ç

è

æ

+

-

=

¶

¶

pq

pq

pq

ij

ij

ev

pq

pq

pq

ij

ij

ij

r

c

r

d

r

c

r

dx

c

x

S

)

(

)

(

)

(

2

0

2

f

[image: image34.wmf]ï

þ

ï

ý

ü

ï

î

ï

í

ì

ú

ú

ú

û

ù

ê

ê

ê

ë

é

+

-

=

¶

¶

å

å

å

ev

pq

pq

pq

pq

ij

ij

ij

pq

pq

ij

ij

ij

ij

r

c

d

r

x

d

c

r

c

r

d

x

S

2

2

0

2

)

(

)

(

)

(

2

f

[image: image35.wmf]ï

þ

ï

ý

ü

ï

î

ï

í

ì

ú

ú

ú

û

ù

ê

ê

ê

ë

é

-

ú

ú

ú

û

ù

ê

ê

ê

ë

é

-

=

¶

¶

å

å

å

å

å

ev

pq

pq

pq

ij

ij

ev

pq

pq

pq

pq

ij

ij

pq

pq

ij

ij

ij

ij

r

c

r

d

x

r

c

d

r

c

r

c

r

d

x

S

2

2

2

2

2

0

2

)

(

)

(

)

(

2

f

At minima:

[image: image36.wmf]0

2

=

¶

¶

x

S

ij

So,

[image: image37.wmf]å

å

å

å

å

ú

ú

ú

û

ù

ê

ê

ê

ë

é

ú

ú

ú

û

ù

ê

ê

ê

ë

é

-

=

ev

pq

pq

pq

ij

ij

ev

pq

pq

pq

pq

ij

ij

pq

pq

ij

ij

ij

r

c

r

d

r

c

d

r

c

r

c

r

d

x

2

2

2

2

2

0

)

(

)

(

)

(

f

The above formula is implemented in Fortran routine method1_2.f. After each iteration, subroutine ‘update’ is called to revise all the calibration constants before the next iteration.

B (Programming)

B1 (Labview vi)

Labview programming is conducted in two separate windows.

The wiring diagram, (Fig B1.1), is where the actual program is written. This is a small, but useful, part of a vi (virtual instrument / program) that requests a voltage reading from a data acquisition module (1). The data is returned in the form of a string. This is then converted to a useful format (2)(3) before placing the data in an array (4). This is then displayed on a waveform chart (5) and then written to file (6). This is all placed within a while loop (while stop button is not pushed (7)), that iterates every 4 seconds (8)
(1) is actually a separate vi that is passed the arguements #000 (the string to send to the DAC module) and 0 which is the com port its connected t. Labview is very modular, and usually many of these subvi’s will make up a whole program.

Fig B1.1

[image: image38.jpg]
The other screen is called the front panel (Fig B1.2). This is where all the control switches, output graphs etc. are situated. This is the screen you use when the program is running. The waveform chart below is represented at (5) in the above diagram. The stop switch that halts the acquisition loop is represented at (7).

Fig B1.2

[image: image39.png]
Appendix B2 (Fortran routines)

Most of the fortran routines in this section were implemented through a PAW Macro. This was simply a routine of PAW commands. This would generally set up the necessary vectors / arrays that would be needed for the routine. I have included the Macro + decription for the first program, however, I will only include them for further routines if they perform a task other then those mentioned above.

Evtcount.f

real function evtcount

*.

**... determines how many electron-positron pairs have useful paths for calibration.

*.

*.**

*

** declares common bloke ‘pythia.ntp’ along with vectors and variables

*

 include 'pythia.ntp'

 vector count

 integer ii, events

 real e, pz, rcheck, rap,y1,y2

 parameter (y1=2.4, y2=2.6)

 data events/0/

*

*---

** main routine

*

 rcheck=0

** loop over all the particles in the tracker

 do 10 ii = 1, ntrack

** is the particle a positron or electron?? (i.e. has particle id=11 or –11)

 if (abs(idpart(ii)).eq.11 .and. p4part(1,ii).gt.20) then

** it is! So assign assign momentum in z direction and energy to variables pz & e

 pz = p4part(4,ii)

 e = p4part(1,ii)

** with pz and e we can calculate the particles rapidity

 rap = max(min(0.5*log((e+pz)/(e-pz)),100.),-100.)

 rap=abs(rap)

** if the particle has rapidity that puts it in the red region then rcheck goes up by 1

** if the particle has rapidity that puts it in the green region then rcheck goes up by 2

 if (rap.gt.y1 .and. rap.lt.y2) then rcheck=rcheck+1

 else if (rap.lt.y1) then rcheck=rcheck+2

 end if

** if both of the above conditions are met in a single event (i.e. rcheck =3), we have an event that is useful

* for our purposes!

 if (rcheck.eq.3) then

 events=events+1

 end if

 end if

 10 continue

** once finished looking at an event, the current number of useful events is written to a vector of length 1.

* This is done because the value of events is lost at the end of this programs implimentation

* As a vector is global, this records data until it is removed by the user or PAW is exited.

 count(1)=events

 end

Espread.f

real function espread(X,Y)

*

** primarily works out the average energy in each crystal as fraction

** of the total energy in the supercrystal

*

*

** include common block 'calib2.ntp' and declare vectors and variables

** data icount keeps track of each iteration (i.e. each event in the ntuple of data)

*

 implicit none

 include 'calib2.ntp'

 vector ef,efnorm,count,etot

 integer X,Y,Xsc,Ysc,I,J,N,M,icount

 data icount/0/

 real x1,x2,y1,y2

**

 Xsc=mod(ixmaxe-1,5)

 Ysc=mod(iymaxe-1,5)

 etot(1)=0

** Calculate appropriate limits in cm for the chosen crystal

**

 x1=29.25+(X-1)*2.9

 x2=x1+2.9

 y1=43.6-(Y-1)*2.9

 y2=y1-2.9

** this establishes whether the event is ok. We only want

** events where the photon hits the correct crystal and also

** deposits most of its energy in it (no glancing blows!). We

** tell the program where the photon should be hitting by passing

** in the arguments X and Y.

 if (xyz1(1).gt.x1.and.xyz1(1).lt.x2) then

 if (xyz1(2).lt.y1.and.xyz1(2).gt.y2) then

 if (Xsc+1.eq.X.and.-Ysc+5.eq.Y) then

 icount=icount+1

** calculate the total energy in the supercystal for this event

 do 10 I=1,5,1

 do 20 J=1,5,1

 etot(1)=etot(1)+ecrcal((-X+6)+I,(-Y+6)+J)

 20 continue

 10 continue

*

** ef(,) sums the energy over all events for each supercrystal

** efnorm(,) sums the energy over all events as a fraction of the

** total energy in supercrystal

*

 do 30 N=1,5,1

 do 40 M=1,5,1

 ef(N,M)=ef(N,M)+(ecrcal((-X+6)+N,(-Y+6)+M))

 efnorm(N,M)=efnorm(N,M)+(ecrcal((-X+6)+N,(-Y+6)+M))

 + /etot(1)

 40 continue

 30 continue

 endif

 endif

 endif

 count(1)=icount

 end

S_error.f

REAL FUNCTION s_error(X,Y)

*

** routine used to calculate the standard error of the mean

** for the energy entering each crystal within supercrystal

*

** including common bloke and declaring vectors and variables

*

 implicit none

 include 'calib2.ntp'

 vector count,ef,sumdx,seom

 integer I,J,X,Y,Q,R

 real dx

*

*

*

** for each event, find the difference between energy and mean energy

** in each of the 25 crystals and sum its square.

*

 do 10 I=1,5,1

 do 20 J=1,5,1

 dx=ecrcal((-X+6)+I,(-Y+6)+J)-ef(I,J)

 sumdx(I,J)=sumdx(I,J)+dx**2

 20 continue

 10 continue

*

** calculate the seom for each crystal as a percentage of the mean

*

 do 30 Q=1,5,1

 do 40 R=1,5,1

 seom(Q,R)=100*(sumdx(Q,R)**0.5)/(count(1)*ef(Q,R))

 40 continue

 30 continue

 end

Getdata.f

REAL FUNCTION getdata(Xo,Yo)

*

** function fills vectors with data needed for gauss and method routines

*

** declarations

 implicit none

 include 'calib2.ntp'

 vector xbar,ybar,pxy,ptot,px1y1,count,zbar

 integer ecount,Xo,Yo,Xsc,Ysc,I,J

 real x1,x2,y1,y2

 data ecount/0/

*------------------------------

** set limits for target crystal

 x1=29.25+(Xo-1)*2.9

 x2=x1+2.9

 y1=43.6-(Yo-1)*2.9

 y2=y1-2.9

 Xsc=mod(ixmaxe-1,5)

 Ysc=mod(iymaxe-1,5)

* * does photon hit correct crystal and deposit max energy in it?

 if (xyz1(1).gt.x1.and.xyz1(1).lt.x2) then

 if (xyz1(2).lt.y1.and.xyz1(2).gt.y2) then

 if (Xsc+1.eq.Xo.and.-Ysc+5.eq.Yo) then

 ecount=ecount+1

** assign position of photon strike for each event to vectors

 xbar(ecount)=xyz1(1)

 ybar(ecount)=xyz1(2)

 zbar(ecount)=xyz1(3)

** move around supercrystal taking energies as we go

 do 10 I=1,5,1

 do 20 J=1,5,1

 pxy(ecount,I,J)=ecrcal(6-Xo+I,6-Yo+J)

 ptot(ecount)=ptot(ecount)+ecrcal(6-Xo+I,6-Yo+J)

** assign energy for target crystal to vector of max energies

 if (I.eq.Xo.and.J.eq.Yo) then

 px1y1(ecount)=ecrcal(6,6)

 endif

 20 continue

 10 continue

 endif

 endif

 endif

 count(1)=ecount

 end

gauss.f

REAL FUNCTION SUBROUTINE gauss(step)

 implicit none

 vector gtot,frac,gbar,limx,limy,delx,dely

 integer I,J,ecount,step

 real x1,x2,y1,y2,Xo,Yo,Zo

 data ecount/0/

 parameter(Xo=29.25,Yo=43.6,Zo=317.50)

*

*--------------------------

*

 ecount=ecount+1

 call getlimits(Xo,Yo,Zo)

 do 10 I=1,5,1

 do 20 J=1,5,1

 x1=limx(I)

 x2=limx(I+1)

 y1=limy(J)

 y2=limy(J+1)

 call garray(ecount,step,x1,x2,y1,y2)

 frac(ecount,I,J)=gbar(1)*delx(I)*dely(J)

 20 continue

 10 continue

*DBG++

 print *, 'ecount = ', ecount

 print *, 'frac = '

 print *, ((frac(ecount,I,J),J=1,5),I=1,5)

*DBG--

 end

 SUBROUTINE getlimits(Xo,Yo,Zo)

 implicit none

 vector limx,limy,delx,dely

 integer I,J

 real Xo,Yo,Zo

*

*----------------------------

*

 limx(1)=Xo

 limy(1)=Yo

 do 10 I=2,6,1

 do 20 J=2,6,1

 delx(I-1)=(2.9*(Zo**2+limx(I-1)**2)**0.5)/Zo

 dely(J-1)=(2.9*(Zo**2+limy(J-1)**2)**0.5)/Zo

 limx(I)=limx(I-1)+delx(I-1)

 limy(J)=limy(J-1)-dely(J-1)

 20 continue

 10 continue

 end

 SUBROUTINE garray(ecount,step,x1,x2,y1,y2)

 implicit none

 vector gbar,xbar,ybar

 integer pcount,ecount,J,K,step,n

 real x,y,sd,x1,x2,y1,y2,incx,incy,gaus2d

 parameter (sd=0.959146)

*

*--------------------------

* assigns gauss values to points within a crystal

**

 incx=(x2-x1)/step

 incy=(y2-y1)/step

 pcount=0

 n=(step+1)**2

 gbar(1)=0

 do 10 J=1,step+1,1

 do 20 K=1,step+1,1

 pcount=pcount+1

 x=x1+(J-1.)*incx

 y=y1+(K-1.)*incy

 gbar(1)=gbar(1)+

 + (gaus2d(x-xbar(ecount),y-ybar(ecount),sd))/n

 20 continue

 10 continue

 end

**

 real function gaus2d(xx,yy,sd)

 real xx, yy, sd

 gaus2d = exp(-0.5*(xx**2+yy**2)/(sd**2))

 end

**

NCTION method1(Xo,Yo)

*

* * function calculates calibration constant using data from getdata and the method from append A

*

** decalrations

 implicit none

 vector t1,t2,cal,cal1

 integer Xo,Yo,it

 data it/0/

 it=it+1

** call subroutines to get the two terms of the equation seperately

 call gett1

 call gett2

 ** calculate the calibration constant for Xo Yo

 cal(Xo,Yo)=t1(1)-t2(1)

** re-normalise the array of constants by calling calrevise

 call calrevise

** record cal(Xo,Yo) for each iteration of the routine

 cal1(it)=cal(Xo,Yo)

 end

*

**

 SUBROUTINE calrevise

*

** normalises calibration array

*

** declarations

 vector cal

 integer Q,R,S,T

 real sumc,scale

*---

 sumc=0

 scale=0

** sum up the constants

 do 60 Q=1,5,1

 do 70 R=1,5,1

 sumc=sumc+cal(Q,R)

 70 continue

 60 continue

 scale=25./sumc

 ** re-scale the array with 25/sum of constants

 do 80 S=1,5,1

 do 90 T=1,5,1

 cal(S,T)=scale*cal(S,T)

 90 continue

 80 continue

 end

*

 SUBROUTINE gett2

*

*

** function calculates second term of functional

* * minimalisation formula.

 *

** declarations

 implicit none

 vector nfrac,pxy,cal,den,A,num,

 + count,t2

 integer I,n,L,M

 n=count(1)

 num(1)=0

 do 10 I=1,n,1

 do 20 L=1,5,1

 do 30 M=1,5,1

 num(1)=num(1)+((cal(L,M)*pxy(I,L,M))/A(I))*(nfrac(I,L,M)

 + -(cal(L,M)*pxy(I,L,M)/A(I)))

 30 continue

 20 continue

 10 continue

 t2(1)=num(1)/den(1)

 end

*

 SUBROUTINE gett1

*

* * function calculates first term of functional

* * minimalisation formula.

*

** declarations

 implicit none

 vector fx1y1,px1y1,pxy,count,cal,t1,

 + den,A

 integer I,J,K,n

*

*

 n=count(1)

 den(1)=0

 do 10 I=1,n,1

 A(I) = 0

 do 20 J=1,5,1

 do 30 K=1,5,1

 A(I)=A(I)+(cal(J,K)*pxy(I,J,K))

 30 continue

 20 continue

 den(1)=den(1)+px1y1(I)/A(I)

 10 continue

 t1(1)=fx1y1(1)/den(1)

 end

*

REAL FUNCTION method1_2(Xo,Yo)

 implicit none

 vector count,sigpq,tt,bt,x

 integer N,Xo,Yo,icount,cnt

 data icount/0/

*

*----------------------------

*

 icount=icount+1

 cnt=count(1)

 do 10 N=1,cnt,1

 call pqsum(N)

 call topterm(N,Xo,Yo)

 call botterm(N)

 10 continue

 x(icount)=tt(1)/bt(1)

 tt(1)=0

 bt(1)=0

 call update(icount,Xo,Yo)

 end

 SUBROUTINE pqsum(N)

 implicit none

 vector cal,pxy,sigpq

 integer I,J,N

*

*--------------------

*

 sigpq(1)=0

 do 10 I=1,5,1

 do 20 J=1,5,1

 sigpq(1)=sigpq(1)+(cal(I,J)*pxy(N,I,J))

 20 continue

 10 continue

 end

**

 SUBROUTINE topterm(N,Xo,Yo)

 implicit none

 vector nfrac,px1y1,cal,sigpq,tt

 real dij,p1,p2

 integer N,Xo,Yo

 parameter(dij=1.)

*

*---------------------------

*

 p1=0

 p2=0

 p1=(nfrac(N,Xo,Yo)*dij*px1y1(N)*sigpq(1))

 p2=(cal(Xo,Yo)*dij*px1y1(N)**2)

 tt(1)=tt(1)+((p1-p2)/sigpq(1)**2)

 end

**

 SUBROUTINE botterm(N)

 implicit none

 vector px1y1,sigpq,bt

 real dij

 integer N

 parameter(dij=1.)

*

*------------------------

*

 bt(1)=bt(1)+((dij**2*px1y1(N)**2)/sigpq(1)**2)

 end

 SUBROUTINE update(icount,Xo,Yo)

 implicit none

 vector x,cal,cal1

 integer Xo,Yo,I,J,icount

 real dij

*

*----------------------

*

 do 10 I=1,5,1

 do 20 J=1,5,1

 dij=(-1./24.)

 if (I.eq.Xo.and.J.eq.Yo) then

 dij=1.

 endif

 cal(I,J)=cal(I,J)+(dij*x(icount))

 20 continue

 10 continue

 cal1(icount)=cal(Xo,Yo)

 end

C

Summary of other projects

I began my placement working on experiment that would examine the curing properties of the glue that would be used to attatch the VPT's (Vacuum Photo Detectors) to the lead tungstate crystals that made up the ECAL (electromagnetic calorimeter) (see Fig).

It was important to know if the glue's curing propeties were affected significantly by environmental factors. The hardware consisted of temperature, pressure and humidity sensors contained within a sealed aluminium box, within which the glue sample would be placed. I wrote the software for monitoring the sensors in Labview, which I learnt in the first few weeks of my placement.

The idea was to measure the rate of curing while controlling the temperature and humidity, and monitoring pressure. The temperature was provided by switching a heater composed of 3 '' resistors. A heat sink was attached at the other side of the box. Voltage was controlled by a '' relay box interface. The voltage output from the temperature sensor was monitored and interpreted by the software and the heater voltage was switched accordingly. The humidity was altered by using sodium chloride and '' crystals.

The method to monitoring the rate of curing was discovered by accident by the previous student. It was found that when the glue was placed in contact for a period with a rubber bung the glue discoloured as it dried. Placing a doped sample between two slides would allow us to observe and measure progress of curing from the outer edge of the sample inwards.

Unfortunately, either the syringes used were no longer being used by the lab or the discoloration wasn't observed under a slide, because it was far too faint to measure in this way. After several attempts to substitute a suitable 'dye' this was put on the back burner, and I was introduced to theoretical work.

I also wrote Labview software to monitor 10 channels of temperature data. It was written for a set-up that controlled the environmental temperature of a lead tungstate crystal. The crystal had thermistors attached along the length of it. The reason for this work was a significant dependence between the light yield of the crystals and their temperature. It was therefore essential to get greater understanding of how heat propagates through the material.

I also helped out with the software that controlled the magnets of a 'beam line'. This was a proton source that was taken from the neighbouring ISIS facility. This was for work conducted on samples of scintillating glass.

Sources

Introduction to CMS

� HYPERLINK "http://cmsdoc.cern.ch/cms/TRIDAS/html/IntroToCMS.html" ��http://cmsdoc.cern.ch/cms/TRIDAS/html/IntroToCMS.html

�CERN web-site

� HYPERLINK "http://www.cern.ch/" ��http://www.cern.ch/�

The particle adventure

� HYPERLINK "http://www.cern.ch/pdg/particleadventure/index.html" ��http://www.cern.ch/pdg/particleadventure/index.html�

The Large Hadron Collider (LHC) currently being built in the LEP tunnel at CERN will be the most powerful accelerator in the world and arguably the most complex instrument ever built by mankind. The Compact Muon Solenoid (CMS) is at the heart of the LHC collider, being one of the 4 detectors in the design.

�EMBED Word.Picture.8���

Fig. 4

Fig. 3

Fig. 5

These supercrystals are then assembled in a D shaped structure as shown in fig 5. The whole of the ECAL endcaps is made from 4 of these arrangements. One Dee is made of 4000 individual crystals.

�EMBED Word.Picture.8���

�EMBED Word.Picture.8���

Ecal Endcap

*Rapidity > 2.4

*Rapidity < 2.4

Fig. 10

�EMBED Equation.3���

�EMBED Equation.3���

x

z

(

(

y

*Events whose fragments have less than 20 Gev of energy are removed by a high-speed system called a trigger. The purpose of this system is to only allow through events of interest.

The distribution of the maximum energies, were wider than expected, with a clear tail at (10Gev (indicated in red).

These events were removed with a cut on transverse momentum lower than 35 GeV. The black histogram is the result of us placing this restriction.

This was justified because the trigger system would normally remove such low energy events.

%

%

%

%

y

�EMBED Equation.3���

(

(

z

Zo=317.5cm

(1)

(2)

(3)

* Parameter d is defined as:

� EMBED Equation.3 ��� 		and		� EMBED Equation.3 ���		when� EMBED Equation.3 ���

This refinement removed the need to re-normalise the 25 calibration constants at the end of each iteration.

(6)

(7)

(8)

(2)

(3)

(1)

(5)

(4)

(7)

(5)

* Delcares macro called evtcount.

* Creates vector called count that has length 1 dimension 1

* Loops over ntuple(100) of data with evtcount.f routine (see below).

* Prints the vector count once fortran evtcount.f has finished

* Enter all the above commands

MACRO evtcount

 vec/cre count(1)

 nt/loop 100 evtcount.f

 vec/pri count

 RETURN

* Declares macro called espread and arguments X Y

* Creates vectors

* Loops over ntuple(2) of data with espread.f routine (see below).

* assigns the total number of events used to n.

* scales the named vectors by the reciprocal

MACRO espread X Y

 vec/cre ef(5,5)

 vec/cre efnorm(5,5)

 vec/cre count(1)

 vec/cre etot(1)

 nt/loop 2 espread.f([X],[Y])

 n=count(1)

 vscale ef (1/[n]) ef

 vscale efnorm (1/[n]) efnorm

 vec/pri count

 RETURN

_1047885999.unknown

_1048068937.unknown

_1048068961.unknown

_1048068962.unknown

_1048068963.unknown

_1048068942.unknown

_1048068960.unknown

_1048068958.unknown

_1048068940.unknown

_1048068916.doc
[image: image1.png]

_1048068928.doc
[image: image1.png]

_1048068934.doc
[image: image1.png]

_1048068924.doc
[image: image1.png]

_1048068902.doc
[image: image1.png]

_1048068896.doc
[image: image1.png]

_1046524059.unknown

_1047104921.unknown

_1047884483.unknown

_1047885853.unknown

_1047885870.unknown

_1047885712.unknown

_1047106300.unknown

_1047106310.unknown

_1047722705.doc
[image: image1.png]

_1047105391.unknown

_1047102727.unknown

_1047102743.unknown

_1046524574.unknown

_1046525363.unknown

_1046525644.unknown

_1046524147.unknown

_1037614024.unknown

_1046522609.unknown

_1046523668.unknown

_1037614073.unknown

_1036330962.unknown

_1036390741.unknown

_1036394595.unknown

_1036329429.unknown

_1036328675.unknown

