Gravitino Dark Matter and its collider signatures Koichi Hamaguchi (DESY)

at UK HEP Forum (2005 May, Abingdon, UK)

based on

- W.Buchmüller, KH, M.Ratz, hep-ph/0307181 [PLB574]
- W.Buchmüller, KH, M.Ratz, T.Yanagida, hep-ph/0402179 [PLB588], /0403203
- KH, Y.Kuno, T.Nakaya, M.M.Nojiri, hep-ph/0409248 [PRD70]
- KH, A.Ibarra, hep-ph/0412229 [JHEP0502]
- \bullet A.Brandenburg, L.Covi, KH, L.Roszkowski, F.D.Steffen, $~{\rm hep-ph}/0501287$

PLAN

- Introduction: (What is Gravitino?)
 - Cosmological Gravitino Problems
- Gravitino Dark Matter
- Gravitino at Colliders
- Summary

	quarks $oldsymbol{q}$
replacements	leptons ℓ
Supergravity persymmetry	gauge bosons $A_{\mu}^{(a)}$ Higgs bosons H
graviton e^{lpha}_{μ} squarks \widetilde{q} sleptons $\widetilde{\ell}$ auginos $\lambda^{(a)}$	

.

higgsinos hgravitino ψ_{μ}

gravitino $\psi_{oldsymbol{\mu}}$

graviton e^lpha_μ

gravitino ψ_{μ}

replacements

Introduction: R-parity

• Usually R-parity is imposed to avoid too large baryon/lepton number violation.

 $egin{aligned} q, \ m{\ell}, \ A^{(a)}_{\mu}, \ m{H}, \ e^{lpha}_{\mu}, \ m{\cdot} \ \mathbf{R} ext{-parity} + (ext{even}) \ \widetilde{q}, \ \widetilde{\ell}, \ \lambda^{(a)}, \ \widetilde{h}, \ \psi_{3/2}, \ m{\cdot} \ \mathbf{R} ext{-parity} - (ext{odd}) \end{aligned}$

e.g.,	squark $\widetilde{oldsymbol{q}}$	\longrightarrow	quark $oldsymbol{q}$	+	gaugino $oldsymbol{\lambda}$
0 /	(-)		(+)		(-)

- The lightest SUSY particle (LSP) becomes stable.
- The next-to-lightest SUSY particle (NLSP) can decay only to LSP + SM particle.

Introduction: Setup

We consider a scenario where.....

• LSP = gravitino $\psi_{3/2}$ \cdots stable

..... realized in various SUSY models, e.g., GMSB, mSUGRA, gaugino-MSB.... The gravitino mass: $m_{3/2} \sim \mathcal{O}(\text{eV}) \cdots \mathcal{O}(100 \text{ GeV}).$

\Rightarrow NLSP (= for example charged slepton $\tilde{\tau}$) \cdots very long-lived!!

NLSP slepton LSP gravitino

$$\widetilde{\tau} \longrightarrow \psi_{3/2} + \tau$$

(-) (-) (+)
..... interaction suppressed by $\sim 1/M_{\rm Planck}$

(e.g., for $m_{\widetilde{ au}} = 100$ GeV and $m_{3/2} = 10$ GeV,... $\widetilde{ au}$'s lifetime = 70 days!)

Gravitino Problems:

Gravitino Problems:

thermal history

Gravitino Problems:

thermal history with stable gravitino $\psi_{3/2}$

Gravitino Problems: NLSP decay into Gravitino

• Generic BBN constraints on late decaying particle

Recent analysis including hadronic decay:

– M.Kawasaki, K.Kohri, T.Moroi, astro-ph/0408426 [PRD71] =

- cf. K.Jedamzik, astro-ph/0402344 [PRD70]
- Constraints on NLSP decay into Gravitino

Some of recent analyses

- • • •

- M.Fujii, M.Ibe, T.Yanagida, hep-ph/0310142 [PLB579]
- J.R.Ellis, K.A.Olive, Y.Santoso, V.C.Spanos, hep-ph/0312262 [PLB588]
- J.L.Feng, S.Su, F.Takayama hep-ph/0404231 $\left[\text{PRD70} \right]$
- L.Roszkowski, R.Ruiz de Austri hep-ph/0408227

Gravitino Dark Matter: thermal relic density

 \cdots depends on the history of the very early Universe

Dominant production occurs just after the Inflation

(See latest calculation, M. Bolz, A. Brandenburg, W. Buchmüller, NPB606, 518 ('01).)

Several ways to make $\Omega_{3/2}$ independent of T_R

 \bullet thermal production + changing gauge coupling

– W.Buchmüller, KH, M.Ratz, hep-ph/0307181 $\left[\text{PLB574} \right]$

\bullet thermal production + late time entropy production

e.g., some of recent works $\cdot\cdot\cdot$

- \cdots
- M.Fujii, T.Yanagida, hep-ph/0208191 $\left[\text{PLB549} \right]$
- M.Fujii, M.Ibe, T.Yanagida, hep-ph/0309064 $\left[\text{PRD69} \right]$
- M.Ibe, T.Yanagida, hep-ph/0404134 $\left[\text{PLB597} \right]$
- W.Buchmüller, KH, M.Ibe, T.Yanagida, work in progress

 $- \cdots$

• non-thermal production from NLSP decay ("superWIMP" mechanism)

– J.L.Feng, A.Rajaraman, F.Takayama, hep-ph/0302215 [PRL91], hep-ph/0306024 [PRD68] – cf. L.Covi, J.E.Kim, L.Roszkowski, hep-ph/9905212 [PRL82]

non-thermal production from other sources

Several ways to make $\Omega_{3/2}$ independent of T_R

• thermal production + changing gauge coupling

– W.Buchmüller, KH, M.Ratz, hep-ph/0307181 [PLB574]

 \bullet thermal production + late time entropy production

e.g., some of recent works $\cdot\cdot\cdot$

 $- \cdots$

- M.Fujii, T.Yanagida, hep-ph/0208191 $\left[\text{PLB549} \right]$
- M.Fujii, M.Ibe, T.Yanagida, hep-ph/0309064 $\left[\text{PRD69} \right]$
- M.Ibe, T.Yanagida, hep-ph/0404134 $\left[\text{PLB597} \right]$
- W.Buchmüller, KH, M.Ibe, T.Yanagida, work in progress

 $- \cdots$

• non-thermal production from NLSP decay ("superWIMP" mechanism)

– J.L.Feng, A.Rajaraman, F.Takayama, hep-ph/0302215 [PRL91], hep-ph/0306024 [PRD68] – cf. L.Covi, J.E.Kim, L.Roszkowski, hep-ph/9905212 [PRL82]

non-thermal production from other sources

gauge coupling at high $oldsymbol{T}$ and gravitino abundance

 $g(\phi)$

W.Buchmüller, KH, M.Ratz, PLB574('03)

$$V(\phi) \xrightarrow{T > 0} V(\phi) + a_2 g^2(\phi) T^4$$

- $\implies \phi \text{ is shifted}$
- $\implies g(\phi)$ decreases at high T.

$\frac{\text{Gravitino Dark Matter}}{\text{gauge coupling at high } \boldsymbol{T} \text{ and gravitino abundance}}$

W.Buchmüller, KH, M.Ratz, PLB574('03)

For a simple set-up

 \cdots , moduli problem associated with ϕ field \longrightarrow Open Question

Gravitino at Colliders:

Gravitino at Colliders:

If Gravitino LSP is the Dark Matter, \cdots

Material Heavy Charged Particle Track (exciting signature!) ... But they escape the detector — gravitino is not seen

Gravitino at Colliders:

Let's stop the sleptons · · ·

massive stopper material

Wait for a while \cdots

Gravitino at Colliders:

After a while, · · · Slepton decay into Gravitino!!

 $etector \ R_{IP}$

for G2b point of GMSB model ($m_{\tilde{\tau}} = 100 \text{ GeV}$ etc) and $\mathcal{L} = 300 \text{ fb}^{-1}$ (= 3 years high luminosity).

at ILC

Number of collected
$$\tilde{\tau} \simeq 0.9 \times 10^5 \times \left[\frac{M_{\text{total}}/1 \text{ kto}}{(R_{ID}/10 \text{ m})}\right]$$

for $m_{\tilde{\tau}_R} = 100 \text{ GeV}$, $m_{\tilde{e}_R} = 103 \text{ GeV}$, and $m_{\tilde{B}} = 110 \text{ GeV}$, e^-e^- mode with $E_{\rm cm} = 229 \text{ GeV}$, $\mathcal{L} = 100 \text{ fb}^{-1}$ ($\simeq 250 \text{ days run}$)

Stopper = Detector??

It's better if the stopper simultaneously serves as a real-time detector

- to identify the stopping position $ec{x}_{ ext{stop}}$
- ullet to record the stopping time $t_{
 m stop}$
- ullet to record the decay time $t_{
 m decay}$
- and to study the decay products

for each NLSP event.

It's encouraging that some existing detectors can serve as a realistic stopper-detector!!

- e.g. Soudan II (fine-grained tracking calorimeter for proton decay, with drift tubes sandwiched between steel sheets.)
 - total mass 0.96 kton
 - \bullet track resolution 0.18 cm \times 0.18 cm \times 1cm.
 - \bullet dead time of each tube $<({\rm back\ ground\ }\mu$ rate)^{-1}

Neutrino backgrounds from atmospheric/collider events are also small enough.

Gravitino at Colliders:

3 methods to test (discover?) the gravitino LSP

W.Buchmüller, KH, M.Ratz, T.Yanagida, hep-ph/0402179 [PLB588], hep-ph/0403203

Figure: $A_{RL}(\cos\theta)$.

We cut the soft photon (energy below 10% of maximal photon energy, $E_{\gamma}^{\text{max}} = (m_{\tilde{\tau}}^2 - m_{3/2}^2)/2m_{\tilde{\tau}}).$

Gravitino at Colliders:

Gravitino signal

would prove the existence of supergravity in nature!!

· What would prove the supergravity? Standard Model II spontaneously broken local (gauge) symmetry Higgs mechanism massive gauge (spin-1) bosons $Z \otimes W^{\pm}$ discovered in 1983.

· What would prove the supergravity ? Supergravity Standard Model spontaneously broken local symmetry. spontaneously broken local supersymmetry super-Higgs mechanism Higgs mechanism massive spin-3/2 fermion gravitino 4/3/2 massive gauge (spin-1) bosons $Z \otimes W^{\pm}$ needs to be discovered! discovered in 1983

- Cold Dark Matter may be the Gravitino LSP.
- Then NLSP is long-lived, and

(if charged) can be collected in future colliers.

- \bullet By looking at NLSP slepton decay, we can \cdots
 - measure the Planck scale M_P ,
 - test the gravitino coupling,
 - measure the gravitino spin.

Discussion: in addition · · ·

- can probe Lepton Flavour Violation, KH, A.Ibarra, hep-ph/0412229 [JHEP0502]
- can test the axino LSP scenario A.Brandenburg, L.Covi, KH, L.Roszkowski, F.D.Steffen, hep-ph/0501287

For Questions and Comments

thermal history with gravitino $\psi_{3/2}$

${ m BBN\ constraints}$: in general for a late-decaying particle $_X$ o constraints on $({ au}_X,\ m_X Y_X)$.

latest detailed analysis including hadronic decay modes:

M. Kawasaki, K. Kohri and T. Moroi, astro-ph/0402490 + 0408426. (cf. K. Jedamzik, astro-ph/0402344)

unstable gravitino

ightarrow upper bounds on $T_{old R}$ for a given $m_{3/2}$

Solutions

- very heavy gravitino (anomaly mediation)
 - cf. M.Ibe, R.Kitano, H.Murayama, T.Yanagida, hep-ph/0403198.
- Iow scale inflation + baryogenesis

e.g. Affleck–Dine, EW baryogenesis, non–thermal/resonant/soft leptogenesis, \cdots

• late-time entropy production

e.g. by moduli. but cf. K.Kohri, M.Yamaguchi, J.Yokoyama, hep-ph/0403043.

- decays only into harmless particle
 - e.g. into axion and axino, T.Asaka, T.Yanagida, PLB494('00)

Fig. $Br(\text{gravitino} \rightarrow \text{gluino}) = 1$ from Kawasaki et.al. astro-ph/0408426

stable gravitino: NSP decay into gravitino

How thick should the stopping material be?

Stopping range R strongly depends on the velocity $\beta_{\widetilde{\tau}}$: $R = \max \times f(\beta)$. e.g., for $m_{\widetilde{\tau}} = 150$ GeV,

- $m{eta}_{\widetilde{m{ au}}}={m{0.37}} \quad \Longrightarrow \quad {m{R}}={m{1000}}~{m{g/cm}^2}={m{10}}~{m{m}}/$ water
- $eta_{\widetilde{ au}} = 0.48 \quad \Longrightarrow \quad R = 3000 \; {
 m g/cm}^2 = 30 \; {
 m m/}$ water
- $eta_{\widetilde{ au}} = \mathbf{0.54} \quad \Longrightarrow \quad oldsymbol{R} = \mathbf{5000} \; \mathsf{g/cm}^2 = \mathbf{50} \; \mathsf{m/} \; \mathsf{water}$

 \implies Sleptons must be sufficiently slow.

But a few % of the $\widetilde{\tau}$ s have sufficiently small velocity.

How many sleptons can we collect at LC ???

At LC one can restrict the velocity β by adjusting the beam energy!

•
$$\sigma(e^+e^- o \widetilde{ au}^+ \widetilde{ au}^-) ~\propto~ eta^3_{\widetilde{ au}} ~~$$
 suppressed for small $eta_{\widetilde{ au}}$.

On the other hand,

•
$$\sigma(e^-e^- o \widetilde{e}^-\widetilde{e}^-) \propto \beta_{\widetilde{e}}$$
 then $\widetilde{e}^- o \widetilde{\tau}^\mp \tau^\pm e^-$

For small velocity e^-e^- is better than e^+e^- .

How many sleptons can we collect at LC ???

(for comparison) define "pseudo-goldstino" X, which has goldstino interactions Lgoldstino = $\left(\frac{m\tilde{\epsilon}^2}{13 \, \text{M}_{2} \text{M}_{p}}\right) \left(\tilde{\tau}_{R}^* \bar{\chi}_{R}^{P} \tau + h.c\right) - \frac{m\tilde{\epsilon}}{416 \, \text{M}_{2} \text{M}_{p}} \bar{\chi}[\tilde{\epsilon}^{P}, \tilde{\epsilon}^{P}] \tilde{\delta}_{L_{n}}^{T}$ photino mass - explicit breaking of global SUSY.

$$A_{RL}(\cos\theta) = \frac{\frac{d\Gamma}{d\cos\theta}(\tilde{\tau}_R \to \tau_R + \gamma_R + X) - \frac{d\Gamma}{d\cos\theta}(\tilde{\tau}_R \to \tau_R + \gamma_L + X)}{\frac{d\Gamma}{d\cos\theta}(\tilde{\tau}_R \to \tau_R + \gamma_R + X) + \frac{d\Gamma}{d\cos\theta}(\tilde{\tau}_R \to \tau_R + \gamma_L + X)} \qquad X = \frac{\sqrt{3}}{3/2}, X \text{ or } X$$

We cut the soft photon (energy below 10% of maximal photon energy, $E_{\gamma}^{\text{max}} = (m_{\tilde{\tau}}^2 - m_{3/2}^2)/2m_{\tilde{\tau}}).$

 $m_{\tilde{\tau}} = 150 \text{ GeV}, m_X = 10 \text{ GeV}.$

Probing Lepton Flavour Violation

KH, **A.Ibarra**, hep-ph/0412229 [JHEP0502]

$$\widetilde{ au}
ightarrow \psi_{3/2} + au$$

If there is a lepton flavour violation,

$$\widetilde{ au} o \psi_{3/2} + e$$
 or $\widetilde{ au} o \psi_{3/2} + \mu$

For instance, if we observe no electron event for 10000 stopped staus,

$$Br(\widetilde{ au}
ightarrow \psi_{3/2} + e) < 2.3 imes 10^{-4}$$
 at 90% c.l.

 $|U_{\widetilde{ au} e}|^2 \ < \ 2.3 imes 10^{-4}$

Severe bounds on the slepton flavour mixings!!

Gravitino LSP vs Axino LSP

A.Brandenburg, L.Covi, KH, L.Roszkowski, F.D.Steffen, hep-ph/0501287

Gravitino LSP vs Axino LSP

A.Brandenburg, L.Covi, KH, L.Roszkowski, F.D.Steffen, hep-ph/0501287

