

3rd September 2002

Calibration

C .N .P .Gee Rutherford Appleton Laboratory

Things to calibrate...

Several "Calibration" activities:

- Digital Timing
 - compensates for internal cable & electronics delays
 - checks internal data paths
- ** Analogue pulse peak timing
 - phase and delay to capture
- ** Analogue Pulse Shape
 - Preprocessor BCID settings

- ** Analogue Pulse Energy Calibration
 - Tower builder delay/gain equalisation
 - Preprocessor LUT conversion factors to GeV
 - Integrity of tower building chain.

- Mechanisms: Murrough, Thomas & I are working on a document, intended to be a joint publication with calorimeter groups:
 - Which calorimeter calibration system are used;
 - How do LVL1 electronics/computers interact with calorimeter electronics & computers during a calibration;
 - How is the calibration steered (run control, sequences, checkpoints,...)
- Algorithms: Eric & I started a discussion on the calculations and decisions that the software needs to perform.
 - This is what I'm now talking about

Boundary Conditions

- The overall algorithm <u>must</u> generate values for all our parameters (internal trigger + analogue chain) for all reasonable calorimeter states.
 - This implies an agreed (by Atlas) way of handling defective parts of the calorimeter, calibration system and analogue readout chain.
 - "Defective" could include dead, unstable, low gain,
- Calo groups probably know (in a database) which raw cells are faulty. But they don't have access to data passing though the readout to LVL1, so can't know about this data path.
 - So we have to be prepared to assess routinely the condition (gain, timing) of every calo cell to the trigger tower data.

Handling Dead Calo Cells

- In the LAr, up to ~60 cells contribute to a trigger tower.
 - Probably desirable to turn off (at tower builder) dead, oscillating, and uncalibrated cells.
 - Make compensating change to tower LUT or thresholds?
- In other calorimeters, loss of a cell can be a big fraction of the energy. What do we do?
- Probably some (Monte Carlo) studies are needed to make the choices.

Timing & Amplitude

- We need to start developing some algorithms and c++ to analyse a sampled analogue pulse. It should...
 - Extract peak timing;
 - Extract energy;
 - Extract BCID coefficients;
- ...because we need to know how CPU intensive they are, and also how they can be overlapped to use the same data.
 - Does any code exist to do this?
- Then we can complete the agreements with calorimeter groups on the mechanisms.

Internal Timing

- We will also need, quite soon, code to optimise the internal timing of various components in the trigger system.
 - Need not be complex;
 - But will need to be tuned to handle all the timings for all our links
 - ...including some timing checks on those that adjust themselves automatically.

The End

C. N. P. Gee RAL September 2002