

Comments on data compression for DAQ readout

Acknowledgements

* Most of this is not new, but it isn't written down in one place (and isn't all written down)

***** Useful discussions with several people, notably Norman

Introduction

- ***** We will now use one type of ROD everywhere, so ...
- *** Preprocessor no longer uses PipeLine Bus to RODs**
 - This was the bottleneck that dictated the need to do data compression on the PPMs

***** Therefore, it is a good time to revisit:

- **Why we need data compression**
- *** Which data to compress**
- **Where to do it**
- **How** we might do it

Summary of data read out to DAQ

Which data to read out, & number of slices, is variable Our URD says it must be *at least one slice* of:

- + Trigger-tower output from look-up tables
- **+** Trigger bits sent to CTP
- This allows verification of algorithm processing, and gives details of where and what in the detector caused the trigger

***** Much more data available, for up to 5 slices:

- **+ PPM trigger-tower raw data**
- **+ PPM trigger-tower look-up table outputs for >1 slices**
- **+** CPM trigger-tower input data, and hit-count results
- + JEM input data (2x2 trigger towers), hit-count results, and energy sums
- + CMM input data, and results (both crate and system levels)
- ***** The most voluminous items are the first three
 - **Essential** to be able to read out PPM inputs and outputs separately (and different number of slices), since they are the two biggest items
 - Could reduce volume if CPM, JEM, CMM had separate control over readout of results and inputs (don't always want both ends of data links)

Compression generalities

- ♦ Why?
 - * DAQ needs to minimise number of readout links, buffers, and event size for storage

+ This is a 'soft' limit, not a 'hard' one

. We might hope to achieve something like a factor of 2 reduction

Which data?

- * Biggest volumes are raw data, lookup-table outputs, and CPM inputs (*latter two are the same thing for* $\eta < 2.5$)
- * JEM inputs are marginal, the rest not worth doing
- Where?
 - * As late as possible, on the RODs (just before S-Links)
 - **+** Keeps things simple on the modules
 - + Allows data monitoring and calibration from RODs without having to understand or undo the compression

*NOTE: might want to send some data to ROD for monitoring but not read it out to DAQ

Compression methods (1)

Zero suppression

- Simple case of run-length encoding simply replace 0, 0, 0, ... by n*0
- * Use it (as already foreseen) for look-up table outputs and CPM inputs, which are mostly zero (pedestal-subtracted, noise-suppressed, 1 GeV/count)
- ***** Less effective for JEM inputs
 - (fewer zeroes due to adding towers in fours)
- * Can't be used for raw data
 (pedestal, noise, 0.25 GeV/count)

Compression methods (2)

Entropy coding

* Huffman coding

- **•** Was studied extensively for Preprocessor
- Uses continuously-variable word lengths, with shortest words for most frequent data
- Not easy for humans to comprehend (e.g. in event dumps)
- If frequency distribution varies, must change code table in order to maintain efficient compression

* Something simpler?

- + Most raw-data trigger towers are clustered in a small range around pedestal value (and JEM inputs, if wanted, are mostly at or near zero)
- ♦ Could do a reasonable job (not as efficient as Huffman) by using short words (3-4 bits?) for data near pedestal, and full-length words for rest
- Must evaluate how constant pedestal values will be; better if range using short words can remain fixed and the same for all towers

- Only reason left for data compression is to reduce event data to DAQ
- Only do it for large data volumes:
 - ***** Trigger-tower raw data
 - ***** Trigger-tower look-up table outputs
 - *** CPM trigger-tower input data**
 - * Perhaps JEM input data
- Use zero suppression for look-up table outputs
- Simple entropy coding for the rest
 - ***** Huffman coding has disadvantages
 - * Investigate using just two word lengths
 - * Optimise the choice based on expected frequency distribution