
HDMC: An object-oriented approach to hardware diagnostics

U. Pfeiffer, V. Schatz, C. Schumacher (e-mail: schumacher@asic.uni-heidelberg.de)
Kirchhoff-Institut f̈ur Physik, Ruprecht-Karls-Universität Heidelberg, Germany

M. P. J. Landon
Queen Mary and Westfield College, London, UK

Abstract
A software package has been developed which provides

direct access to hardware components for testing, diagnostics
or monitoring purposes. It provides a library of C++ classes for
hardware access and a corresponding graphical user interface.
Special care has been taken to make this package convenient to
use, flexible and extensible. The software has been successfully
used in development of components for the pre-processor
system of the ATLAS level-1 calorimeter trigger, but it could
be useful for any system requiring direct diagnostic access to
VME based hardware.

I. INTRODUCTION

Developing electronics involves a fair amount of testing,
where direct access to hardware via a computer is required.
In addition to low-level test tools like oscilloscopes or logic
analysers, higher level diagnostic facilties are essential for more
complex tests. This includes software to access the developed
hardware in an extensive and easy-to-use way to perform
diagnostics and monitoring of individual or complete groups
of components. Similar functionality is required for later
integration in extended hardware and software frameworks.

The software package presented, called HDMC (Hardware
Diagnostics, Monitoring and Control), addresses these needs.
It provides a library of components for accessing hardware
objects like registers, memories or FPGAs on VME modules
or within devices not directly accessible to VME, but located
on a VME module. It’s also possible to access a VME bus
via a network connection in a client/server configuration. A
graphical user interface based on this library provides hardware
access without requiring special knowledge about software
development. The library can also be used for more direct
access based on compiled or scripting programming languages
for testing or integration into other software environments.

II. HARDWARE ACCESSFRAMEWORK

HDMC is implemented as a set of C++ classes, representing
hardware components in a common framework. This is used
to provide common ways to access similar components, to
transmit data between components and to handle them in a
uniform way. A simple and clean interface for direct hardware
access is provided as well as a more abstract one for access
through a graphical user interface. Register descriptions are
loaded from human-readable configuration files in such a way
that a lot of hardware development can be made without the
necessity to recompile the software.

The basic HDMC framework is formed by two kinds of

classes, one representing hardware objects like registers and
memories and the other representing the access to these objects,
for example VME bus access.

A. Hardware Objects

Hardware objects are modelled as a hierarchy of classes,
separating the interface to access the hardware from the
implementation of the hardware access. That means that from a
software point of view e.g. a register can always be accessed in
the same way by calling read and write functions regardless of
whether it is implemented as a VME register, inside an ASIC or
anything else. This separation of interface and implementation
is one benefit of the object-oriented approach.

Another advantage of object-orientation is the reuse of code.
Functions which are useful to several implementation are only
implemented once in a base class and can then become part
of different implementations of hardware objects by inheriting
this base class. For example the configuration protocol of a
Xilinx FPGA is implemented in a base classFpgaXilinx
and is then used by all objects accessing Xilinx FPGAs, which
is on different modules in different ways.

By making these abstractions of the hardware objects in
an object-oriented class hierarchy two goals are met. A
uniform and compact interface to access hardware objects is
built, and the addition of new hardware components to the
software model is made independent of code accessing the
hardware by these interfaces. This has the effect that new
hardware implementations gain all the functionality present
in the software framework for the common interface of this
implementation. For example, the graphical user interfaces
and test algorithms of registers and memories work for all
kind of registers and memories regardless of their actual
implementation. They just use the common programming
interfaces of all register and memories, which provide functions
to read and write the register or a certain address of the memory.

The upper part of figure 1 labeled hardware components
shows some of the classes representing hardware objects.
The FeAsic is an ASIC developed in the Heidelberg ASIC
laboratory, which was used in hardware tests peformed with
the HDMC software package.

B. Hardware Access

The access to the hardware components, which were
decribed in the previous section, is done by a separate tree of
classes. These implement the underlying functions required for
hardware access and are not directly available to the user. The

Memory

Part

FeAsicFEMFeAsicAccess

Register

Fpga

PartManager

Interface
XilinxFEMXilinx

FeAsicMemory

VMEBus

DummyBus

FeAsicRegister

VMEMemory

VMERegister

VMEModule

VMEAccess

Hardware Access

Hardware Components

Classname
Classname concrete class

abstract class
aggregates many

inherits

Programming

Figure 1: Parts class hierarchy

connection between the component and access classes is done
by so-calleddependencies, which are special object references
manipulable by the user. They represent the dependencies of
hardware objects in terms of access.

For example, to access a register on a VME module the base
address of the VME module has to be known, i.e. the register
object is dependent on a module object. The module has to
know how to access the VME bus on the platform the program
runs on, i.e. the module object is dependent on a VME bus
object. Figure 2 illustrates these kinds of relationships.

RegisterNumber

RegisterAddress

VMEModule

BaseAddress

aFeAsicRegister

FeAsicAccess

Attribute

Attribute

aFeAsicFEM

aVMEBus

Attribute

aVMERegister

VMEModule

aVMEModule

VMEAccess

Figure 2: Parts dependencies example

In addition to dependencies, HDMC classes can have
attributes. These attributes define certain properties of the
software objects, which are required for operation, and are used
to parametrize them. For example, a register has an address
attribute, a module a base address, and a memory a base address
and a size attribute.

Like the hardware component classes the access classes
are also organized in a hierarchy separating interfaces from
implementations. That means that a hardware object can be
used with different implementations of access to it, because it
relies only on the interface common to all implementations of
the relevant access type. The VME register class for example
can be used on different hardware platforms by using the
appropriate VME bus access implementation, which handles
the access to the VME drivers in a platform-dependent way,
but provides platform-independent functions to the outside.

One advantage of the way of handling dependencies is that
they can be changed at run-time. This makes it possible for the

user to create or reorder the software model of the hardware
to be accessed without compiling or restarting software. This
allows, for example, temporarily replacing a real VME bus
access by a dummy access.

C. Handling of hardware classes

All hardware classes, components and access, inherit from
a common base class calledPart. This Part class provides some
basic functionality to all classes of the HDMC framework like a
name, type identification and management of dependencies. It
also allows handling of creation, deletion and manipulation of
Part objects in a uniform way independent of the concrete class.
These tasks are performed by a class calledPartManager,
which is responsible for the management of all Part objects in
a running instance of HDMC.

This handling of arbitrary hardware component and access
classes in a uniform way is a prerequisite for adding a graphical
user interface on top of the basic framework. It makes it
possible to let the user of HDMC create the software objects
needed to access the hardware under test at run-time with a
graphical user interface in a convenient and flexible way. The
underlying hardware access classes remain independent of the
graphical user interface and can also be used to build hardware
drivers or other programs not directly accessible by the user.

D. Software Components

The HDMC package includes a rich set of components.
It supports all kinds of VME registers and memories, Xilinx
FPGAs, a simple I2C master emulation, and a lot of custom
hardware used in the environment of the Pre-Processor system
of the ATLAS Level-1 calorimeter trigger, for example the
PipelineBus [3]. Two sets of components are described below
in more detail, bus access and data movement.

E. Bus Access

HDMC includes several implementations of VME bus
access. There is support for a number of different drivers on
PowerPC, Motorola or Pentium-based single-board computers
and a dummy implementation emulating a VME bus without
performing hardware accesses.

In addition there is a network-transparent VME bus
implementation, which makes it possible to run HDMC on one
computer and perform the actual hardware accesses on another
one. A VME client/server combination transmits requests and
results of bus accesses over the network using a format on top
of TCP/IP. This networked bus allows the control of hardware
sitting in different VME crates from a central location. Another
advantage is that it allows to use a combination of simple
VME single-board computers with standard PCs to control
VME hardware instead of expensive full-featured computers
for VME crates.

F. Data Movement

A basic requirement for testing and diagnosing hardware
is the ability to move data through the hardware. It has to

be possible to load and read memories, to compare data from
different origins or at different times and to view the results.
HDMC provides a general mechanism for this purpose based
on so-calledI/O-Frames.

The idea behind this is that each component able to be
a source or a destination of data is surrounded by a frame
providing ports for input and output of data and where
appropiate a trigger port, which is used to initiate a data transfer
at the output. By connecting outputs of one I/O frame to inputs
of other I/O frames a chain is built suitable for movement of
data between objects.

In figure 3 such a chain is shown, where a data source is
connected to the input of a memory and the memory’s output
is connected to a histogram. By triggering the data source
the memory is filled with data and by triggering the memory
the histogram is filled with memory data. By connecting a
periodic signal to the memory trigger port it is possible to
establish a simple kind of data aquisitation suitable for testing
and monitoring hardware.

Data is moved in blocks and controlled by the state of the
participating I/O frames. That means that on each I/O frame
connection data is moved until either the sender runs out of
data or the receiver runs full. No addressing is needed. The
data is moved in the sequence provided by the I/O frame.

TT

Data

Input ports

Source
Memory

Histo-

gram

Output ports

Trigger ports

Figure 3: Data movement mechanism

Because the I/O frame classes are integrated in the Part class
hierarchy, all the features of creating or manipulating Parts
become also available for them. This allows the user of HDMC
to dynamically arrange data sources, sinks and connections to
efficently adapt to the changing needs of hardware diagnostics.

III. GRAPHICAL USER INTERFACE

The graphical user interface (GUI) allows construction,
manipulation and access to VME modules and other
components in a convenient and uniform way. Access to
hardware configurations can be built using the interface and
changed at run-time. There is also a plot and histogram
component and facilities to present special views of hardware
configurations like modules and crates. The graphical user
interface is based on the cross-platform Qt toolkit by Trolltech
[4].

Figure 4 shows the HDMC main window. It displays
a tree list of the existing Part objects representing hardware
components in the system under test. The user interface

Figure 4: HDMC main window displaying the current Part hierarchy

provides facilities to add new components, to change existing
ones and their relationships, to load and save the resulting
configurations to disk and to access individual hardware
components.

Each Part can have an associated GUI class, which provides
access to this Part and its subclasses. By providing GUIs for
the abstract base classes that form the programming interface
of the hardware access framework, hardware components get
a consistent interface. For example all registers get the same
interface. One type of register interface is shown in figure 5.

Figure 5: Graphical user interface for a register

The graphical user interface also provides access to the
I/O frames used for data movement, which were described in
section F. Figure 6 shows a data plot produced by connecting a
data source producing random data to the histogram I/O frame.

Figure 6: Histogramming and Data Plotting Part

In addition to the access-oriented way to view hardware
configurations presented by the main window, HDMC provides
other views on the hardware, which are more based on the
physical appearance of the hardware. Examples are a module
view and the crate view shown in figure 7.

Figure 7: Crate View

It is also possible to combine the user interfaces of several
hardware components in a single window. This makes it
possible to have for example a compact view of the same
register on different modules.

IV. SCRIPTING

In addition to the graphical user interface, the hardware
access framework of HDMC formed by the Part class hierarchy
can also be used directly from C++ prgrams. Figure 8 shows an
example of how a register is accessed from C++, which gives
an impression of the programming interface of the Part classes.

Module mod (&bus, AddressD8 (0xc00000));

ModuleRegister32 reg (&mod,"FEC.CtrlReg",

}

DummyBus bus;

reg.set("GenerateTrigger",1);

BitMapper::init("default.conf");

if (reg.verify()) {

AddressD32 (0x100))

#include "HDMC.h"

Figure 8: C++ code example for using the hardware Programming
Interface

For hardware testing, access by a graphical user interface
or a compiled language is sometimes not flexible, efficient or
direct enough. In this case it is desirable to have scripting
capabilities, which allow to perform tests in an interactive
way which can gradually move on to a batched mode. Script
languages like Python, Perl or Tcl provide these facilities and
HDMC supports scripting from all of these languages.

The programming interface of the Part classes is exported
to module libraries which can then be used from the scripting

languages. The export process is done by a software package
called SWIG (Simplified Wrapper and Interface Generator) [5],
which automatically creates the wrapper code required for the
language bindings from the C++ header files of HDMC. SWIG
reduces the amount of work needed for extending the scripting
language bindings to new classes to almost zero.

The C++ programming interface is reflected in the scripting
languages. Only slight differences in the syntax are caused by
the different languages. In figure 9 a piece of Python code
is shown, which has the same functionality as the C++ code
shown in figure 8.

if reg.verify():

reg.set("GenerateTrigger", 1)

from hdmc import *

bus = DummyBus()

AddressD32(0x100))

BitMapper_init("default.conf")

reg = ModuleRegister32(mod, "FEC.CtrlReg",

mod = Module(bus, AddressD8(0xc00000))

Figure 9: Python example script accessing hardware

V. WORD FORMAT DEFINITIONS

An ever recurring task in writing software directly accessing
hardware components is the definition of word formats for
registers, memories, readout data etc. The approach taken for
HDMC tries to minimize the work necessary to introduce new
formats or change existing ones.

All word formats are defined in a human-readable
configuration text file, which is read and interpreted by HDMC.
The word format definitions are used by components like
registers and memories to present a view to the user, which does
not require remembering bit numbers or locations of various
fields. Figure 10 shows a configuration file for a register format.
The corresponding representation as graphical user interface is
shown in figure 11.

Bit Widths

Register NameRegisters {

TCM.CR { Display Options

Options { Vertical }

}

}

2 { CLK_SSRCE Select { "No Clock"

"External Lemo"

"External Module"

"Internal" } }

1 { CLK_SPEED }

1 { RESET Bool }

Name for group of bits

Figure 10: Word format definition

Figure 11: GUI generated from the configuration file shown in figure
10

Holding the word format definitions in a separate file means
that it is not necessary to recompile HDMC in order to change
word formats. Since modifications of register and other formats
are a quite common situation in hardware development, the
HDMC approach eliminates the need for many compilation
cycles and makes it possible to adapt to a lot of hardware
changes at run-time via the graphical user interface.

Also, many I/O frame Parts use the word format definitions.
There is an Assembler Part, which converts textual commands
in a binary representation suitable for loading in a memory. The
Disassembler Part does the conversion in the opposite direction
by converting the binary content of a memory in a textual
representation. This works for all stateless command formats,
i.e. formats where the interpretation of the different bit fields
is not dependent on the sequence of words. ADataExtractor
Part allows to extract the values of a single field of a word for
example for histogramming or plotting.

When a very fast and efficient access to register fields is
required the interpretation of a textual description of the format
takes too much time. In this case it is desirable to have a
direct definition of the elements concerned in C++, which can
be resolved at compile-time in order to produce the optimal
access to the hardware in terms of speed. For this case HDMC
provides a set of conversion tools, which translate the word
format definitions to C++ code. The generated files can be
included by a program, which then can access register fields
by native C++ constructs.

Another application of the word format definition files is
the automatic generation of Verilog code. For digital logic
designs this is a time-saving approach to create the necessary
code for registers. HDMC produces synthesizable Verilog code
for registers from the word format definiton files. This also
means that the software to access the registers is ready at the
same moment when the hardware implementation is done.

VI. PLATFORMS AND DEVELOPMENT

HDMC supports a variety of UNIX platforms including
Linux, Solaris and HP-UX, For VME access several VME
single-board computers are supported, running Linux or
LynxOS. Platform support could be extended to Windows

without a major rewrite, and addition of other bus systems
like CompactPCI is possible without change in the remaining
framework or components.

An open-source process is used for development of HDMC.
Source code and documentation is publicly available on the
internet and it is open for contributions of any interested party.

VII. CONCLUSION

The software package has proven to be a useful and reliable
tool for diagnosing hardware. It has been used for the pre-
processor system of the ATLAS level-1 calorimeter system,
whose current development activities are based on a flexible
VME test system [2], but it is not limited to this system. Other
systems in need of a software tool for hardware diagnostics
could also benefit from the HDMC software.

The HDMC software package including source code and
documentation can be obtained at the web pages of the ATLAS
group at theKirchhoff-Institut f̈ur Physikof the University of
Heidelberg [1].

VIII. R EFERENCES

[1] HDMC homepage,
http://wwwasic.kip.uni-heidelberg.de/

atlas/projects/hdmc.html

[2] Volker Schatz,Test of a Readout and Compression ASIC
for the ATLAS Level-1 Calorimeter Trigger, HD-KIP 00-
13, Heidelberg, June 2000

[3] Cornelius Schumacher,The Readout Bus of the ATLAS
Level-1 Calorimeter Trigger Pre-Processor, Fifth
Workshop on Electronics for LHC Experiments,
Snowmass, CERN/LHCC/99-13, 29 October 1999

[4] Troll Tech,http://www.trolltech.com
[5] Simplified Wrapper and Interface Generator (SWIG),

http://www.swig.org

