C3F8 mass flow vs Inlet pressure for Haug SOGX 50 compressor at $\mathbf{6 0 H z}$

Comments:

It can be seen that the mass flow is a function of both inlet and outlet pressures:

$$
\dot{m}=f\left(P_{\text {in }}, P_{\text {out }}\right)
$$

And also that it depends more on $\mathrm{P}_{\text {in }}$ than on $\mathrm{P}_{\text {out }}$,

$$
\begin{aligned}
& \frac{\partial \dot{m}}{\partial P_{O U T}} \approx \frac{5-2}{10-6}=0.75 \mathrm{gs}^{-1} / \mathrm{bar} \\
& \frac{\partial \dot{m}}{\partial P_{I N}} \approx \frac{4-2}{1.6-1.3}=6.7 \mathrm{gs}^{-1} / \mathrm{bar}
\end{aligned}
$$

Theoretical background

Let \boldsymbol{p} be the percent clearance of the compressor,
$p=\frac{V c}{V_{M A X}-V c} \times 100$
Where:

- $\boldsymbol{V}_{M A X}$ is the maximum volume in the cylinder, which occurs when the piston is at one end of its stroke.
- Vc is the minimum volume, or clearance volume, which occurs at the other end of the piston stroke

The clearance volumetric efficiency is

$$
\begin{equation*}
\eta_{V C}=\frac{\text { Volume }{ }_{-} \text {of_vapour_drawn_in }}{\text { swept_volume }}=\frac{V_{M A X}-V_{\text {OPEN }}}{V_{M A X}-V_{C}} \times 100 \tag{b}
\end{equation*}
$$

Where $V_{\text {OPEN }}$ is the volume in the cylinder at which the pressure is low enough for the suction valve to open. ($V_{M A X}-V_{\text {OPEN }}$) is the volume of gas drawn into the cylinder and ($V_{M A X}-V_{C}$) is the total volume swept by the cylinder.
(a) and (b) can be combined to give:

$$
\begin{equation*}
\eta_{V C}=100-p\left(\frac{V_{O P E N}}{V_{C}}-1\right) \tag{c}
\end{equation*}
$$

If an isentropic expansion is assumed for the gas trapped in the clearance volume, i.e. between $\boldsymbol{V c}$ and $\boldsymbol{V}_{\text {OPEN }}$,
$\frac{V_{\text {OPEN }}}{V_{C}}=\frac{\rho_{\text {OUT }}}{\rho_{I N}}=\left(\frac{P_{\text {OUT }}}{P_{I N}}\right)^{1 / K}$
Where $\rho_{\text {IN }}$ is the density at the compressor inlet and $\rho_{\text {out }}$ at its outlet and \boldsymbol{k} is the coefficient of isentropic expansion
Thus,
$\eta_{V C}=100-p\left(\frac{\rho_{\text {OUT }}}{\rho_{I N}}-1\right)=100-p\left(\left(\frac{P_{O U T}}{P_{I N}}\right)^{1 / k}-1\right)$
(e)

The volumetric flow is:

$$
\begin{equation*}
\dot{V}=N \times V_{S W E P T} \tag{f}
\end{equation*}
$$

Where, as seen above $\mathbf{V}_{\text {SWEPT }}=\mathbf{V}_{\text {MAX }}-\mathbf{V}_{\mathbf{C}}$ and \mathbf{N} is the number of cycles per second The mass flow is

$$
\begin{equation*}
\dot{m}=\dot{V} \times \eta_{V C} \times \rho_{I N}=N \times V_{S W E P T} \times\left[100-p\left(\left(\frac{P_{O U T}}{P_{I N}}\right)^{1 / k}-1\right)\right] \times \rho_{I N} \tag{g}
\end{equation*}
$$

$\rho_{\text {IN }}$ is of course, a function of $\mathrm{P}_{\text {IN }}$.

