FAMOS The CMS Fast Monte Carlo Simulation

David Bailey Bristol

Introduction

FAMOS

- What it is
- What's in there now
- Where it's going in the near future

Simulation Chain

How Does Famos Fit Together?

- Idea is to use a chain of individual "simulators"
- These simulators are activated in turn by the FamosEventMgr
 - A normal COBRA singleton
 - accepts registrations of FamosSimulators
 - reads RawHepEvent from DB or Pythia6, etc.
 - use FakeRecReader to run without DB
 - gives RawHepEvent to each FamosSimulator

Structure of FAMOS Now

Details of Some Simulators

Working

- Particle and Material Effects
- Tracking
- Fast Calorimetry
- Coming soon...
 - DDD geometry
 - Gflash style simulation of ECAL/HCAL showers

Particle and Material Effects

- Interactions available:
 - Multiple Scattering
 - Pair Production
 - Bremsstrahlung
 - □ dE/dx
 - Long-lived particle decays
- Simulation code is re-write of Geant 3 routines
 - No step lengths
 - Just use material depth from MaterialProperties of surfaces encountered during swim through magnetic field up to calorimeter surface.
 - Constant magnetic field

Material Effects Simulation

• Тор

 Distribution of scattering angle for 2 GeV electron

Bottom

 Energy spectrum of Bremsstrahlung photons from 28 GeV electron

Tracker

Tracker response/geometry

- Single Tracks
- Vertices
- Jets
- Account for resolutions and correlations

FTSim module

- extrapolate generator particle(s) to innermost detector layer
- build parameterized covariance matrix
- get resolutions and smear track parameters
- extrapolate back to (0,0,0), compute impact parameters (and errors)
- build RecTracks

FTSim

0.004

0.003

0.002

0.001

x 10

0.15

0.1

0.05

0.003

0.002

0.001

ο

o

ο

ο

ο

0

Parameterize covariance matrix diagonal elements as function of **p** and $|\cos \theta|$

10

On

20

20

pt (GeV)

p_t (GeV)

 σ_{\star}

CMSIM+ORCA6

5

10

10

Parametrized

20

10

10

15

× 10

0.15

0.1

0.05

0.003

0.002

0.001

0

0

0

n

0.002 0.003 0.004 0.005

 σ_z

20

p_t (GeV)

1000

0 0

0.001

FTSim

RESOLUTIONS CMSIM+ORCA6 — FTsim

Fast Calorimetry

Simple calorimetric clusters

ECAL – use only electrons & photons

$$\left(\frac{\sigma}{E}\right)^2 = \left(\frac{a}{\sqrt{E}}\right)^2 + \left(\frac{\sigma_n}{E}\right)^2 + c^2$$

□ HCAL, VCAL – use all but muons & neutrinos

$$\left(\frac{\sigma}{E}\right)^2 = \left(\frac{a}{\sqrt{E}}\right)^2 + c^2$$

- Generate SimpleCaloCluster objects
 - provides energy, ϕ , θ , radius, link to generator particle
- Simplified geometry (hard coded frontface numbers)

Fast Calorimetry

Single Electron

- Clear differences between ORCA and FAMOS in this case
- Due to simple propagation of particle to calorimeter – no material
- MaterialEffects classes will fix this problem

Coming Soon...

DDD Geometry

- Need to build a simplified tracker using active Geant-4 volumes from OSCAR
- Will reduce these to cylinders and planes with appropriate material budgets
 - MaterialEffects classes will use this geometry to produce conversions, Brems, scattering etc. before particles reach fast calorimeter simulation
- Expect first iteration of this geometry in next 2-3 weeks

Gflash ECAL/HCAL Showers

- More detailed simulation than simple parameterisations based on resolutions
 - Simulates shower development in ECAL/HCAL material using gamma distribution
 - Parameters extracted from Geant 3 simulation
 - Eventually will be tuned to Geant 4/Testbeam

FAMOS ECAL EM Average Shower Profile

FAMOS/Geant Shower Comparison

- Example here is a comparison of average shower profiles for 10 GeV EM showers between Geant 3 and Gflash
 - Fairly good agreement between shower shapes
- HCAL shower parameterisations underway

10 GeV Geant/FAMOS Comparison

Next Steps

- Integrate more realistic tracker geometry/materials into fast calorimeter simulation
 - More realistic treatment of conversions/Brems
 - Interface it properly into ORCA RecObjs
- Finalise Gflash shower simulation
 - Need to create/extract ECAL/HCAL geometry in a simple, "fast" way
 - Interface at the SimHit level
 - Quite a lot of work!

Going Forward

- FAMOS is central to the Physics TDR
 - But currently only few people are developing it part-time
 - Need more volunteers to work on
 - Geometry implementation
 - Interface to ORCA RecObjs
 - ORCA/Famos validation and testing
 - Fast trigger simulation...
- Let me know if you want to help out!
 - It's a way to get involved with the physics TDR NOW