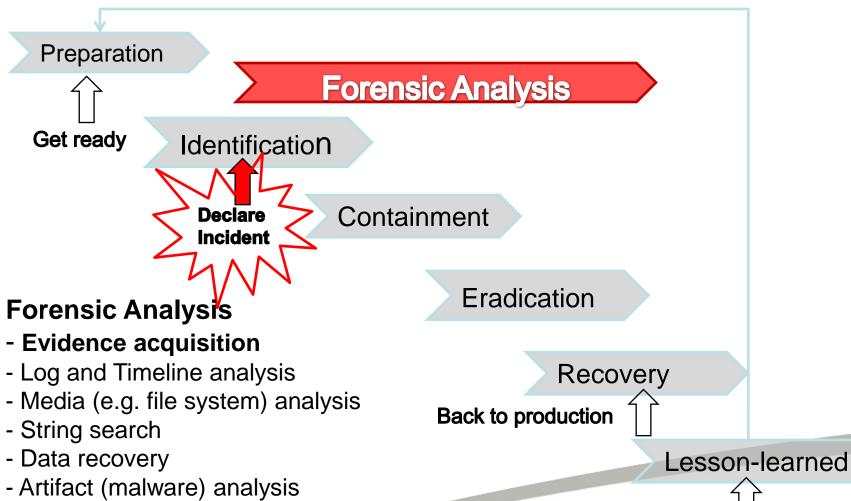


Security Incident Investigation

Mingchao Ma STFC – RAL, UK

HEPSYSMAN Workshop 10th June 2010

Overview


- Security incident handling lifecycle
 - Based on NIST SP800-61rev1 recommendation
 - http://csrc.nist.gov/publications/nistpubs/800-61-rev1/SP800-61rev1.pdf
- Aim at first responder
 - What and how to do?
- Tips and tricks on
 - Evidence collection
 - Basic forensic

It is a question of "when incident will happen", not "if"

Incident Handling Lifecycle

- Reporting

Be warned!

- No two incidents are identical
- NO one-for-all solution, tailor it for your OWN need!
- Many types of incidents
 - DoS, Virus/Worm, Inappropriate usage, unauthorized access etc.
- Focus on "hacking scenario"
- But the principle remains the same!

Step 1 - Preparation

- Know existing policies, regulations and laws
 - Authority of investigation
 - Job description
 - Incident handling procedure
 - What information can be collected?
 - Privacy and wiretapping issue
- Do not violate any existing security policies
- And do not break laws!

Preparation

- Security policy and incident handling procedure
 - Policies & procedures, write them down on PAPER
 - A simple and easy-to-follow procedure is very helpful
- Building a team
 - Information about the team "Organizational Models for Computer Security Incident Response Teams (CSIRTs) (http://www.cert.org/archive/pdf/03hb001.pdf)
- Contacts information and communication channels
 - Name, telephone, email, PGP keys etc.
- Incidents Prevention
 - Risk assessment
 - Patching, hardening, best practice, education etc.
 - Be aware of your organization's security policy
- Known your systems before an incident
 - Profile systems and network
 - Know normal behaviours

Toolkit – Live CDs

- Incident response toolkit
 - Linux forensic live CDs
 - Helix (no longer free ⊕) http://e-fense.com/
 - Live response, live/dead acquisition and analysis
 - FCCU GNU/Linux Forensic Boot CD
 - Belgian Federal Computer Crime Unit
 - http://www.lnx4n6.be/
 - BackTrack 4 has an option to boot into forensic mode
 - http://remote-exploit.org/backtrack.html
 - Many others
 - Will not modify the target system harddisk
 - Will not auto-mount devices on target system
 - Will not use target system swap partition
 - Build-in some well-known open source forensic tools

Toolkit - Forensic

- Any Linux system plus proper open source forensic tools
- US CERT forensic appliance (fedora)
 - A fully functional Linux VM forensics appliance
 - Linux Forensics Tools Repository (RPMs for fedora)
 - http://www.cert.org/forensics/tools/
- SANS SIFT workstation (Ubuntu)
 - VM forensic appliance
 - https://computer-forensics2.sans.org/community/siftkit/
 - Free, but registered first
- BackTrack
- Load of tools readily available

Toolkit - Forensic

- TSK + Autopsy (GUI-frontend)
 - The Sleuth Kit and Autopsy browser
 - http://www.sleuthkit.org/
 - Alternative PSK (GUI-frontend)
 - http://ptk.dflabs.com/
- The Coroner's Toolkit (TCT)
 - http://www.porcupine.org/forensics/tct.html

Toolkit – Network forensic

- Wireshark/tshark
- Tcpdump
- Nmap
- Snort
- P0f (OS passive fingerprinting)
- Antivirus software
 - http://www.clamav.net/
 - AVG and avast! for Linux, free!

Toolkit – Build in

- Trusted binaries statically compiled binaries run from CD or USB
 - Is, Isof, ps, netstat, w, grep, uname, date, find, file, ifconfig, arp
- Test before use
 - different Linux distributions and kernels
 - both 32 bit and 64 bit platform
- Will not modify A-time of system binaries;
- Be aware of limitation can be cheated as well
 - Kernel mode rootkit

Incident Handling Lifecycle

Preparation

Identification

Containment

Eradication

Recovery

Lesson-learned

Step 2 - Identification

- Detect deviation from normal status
 - Alerted by someone else;
 - Host & network IDS alerts;
 - antivirus/antispyware alerts;
 - Rootkit detection tools;
 - file integrity check;
 - System logs;
 - firewall logs;
 - A trusted central logging facility is essential;
 - Correlate all information available to minimise false alarm

Identification

- Declare an incident once confirmed
 - Make sure that senior management is informed
 - Notification who should be notified?
 - EGEE CSIRTs: <u>PROJECT-EGEE-SECURITY-CSIRTS@in2p3.fr</u>
- Following incident handling procedures
 - EGEE incident response procedure
 - https://edms.cern.ch/document/867454

Incident Handling Lifecycle

Preparation

Forensic Analysis

Identification

Containment

Forensic Analysis

- Evidence acquisition
- Log and Timeline analysis
- Media (e.g. file system) analysis
- String search
- Data recovery
- Artifact (malware) analysis
- Reporting

Eradication

Recovery

Lesson-learned

Step 3 – Containment & Forensic Analysis

- Prevent attackers from further damaging systems
- Questions to be answered!
 - Online or Offline?
 - Pull the network cable?
 - Live or Dead system?
 - Pull the plug?

Forensic Analysis

- Start up forensic analysis process once incident has been identified
 - Aim to obtain forensic sound evidences
 - Live system information
 - Will lose once powered off
 - Bit by bit disk image
 - Logs analysis
 - Timeline analysis
 - Data/file recovery
- Collect volatile data FIRST, if possible!

How to collect evidences

- Volatile data collection
- Hard disk image
- Where to store evidences?
 - Attach a USB device
 - Transfer data over network with netcat

Evidence workstation (192.168.0.100):

./nc -l -p 2222 > evidence.txt

Compromised host:

#./ Isof-n |nc 192.168.0.100 2222

Volatile Data Collection

- Aim:
 - Collect as much volatile data as possible
 - But minimise footprint on the target system
- In the order of most volatile to least
 - Memory
 - Network status and connections
 - Running processes
 - Other system information
- Be warned: system status will be modified
- Document everything you have done
- Be aware of the concept of "chain of custody"
 - Maintain a good record (a paper trail) of what you have done with evidence

Volatile Data Collection?

- System RAM
 - Raw memory image with memdump
 Available at http://www.porcupine.org/forensics/tct.html
 - Hardware-based memory acquisition?
 - Virtual Machine
 - Take a snapshot
- Network Information
 - open ports and connections
 - Isof and netstats
 - Nmap
- Process information
 - Running processes with ps
 - Process dumping with pcat
 - Available at http://www.porcupine.org/forensics/tct.html

Other volatile data

- System Information
 - System uptime: uptime
 - OS type and build: uname –a
 - Current date/time: date
 - Partition map: fdisk -l
 - Mount points: mount
 - **–** ?

What to do with memory image?

- Linux memory dump
 - Very limited option (at least with open source tools)
 - Strings search for IP, email or strange strings etc
 - Can be used to cross check with evidence found in file system/logs
 - Some ongoing researches in open source community

Collect Evidence – Disk Image

- Bit by bit disk image
 - Capture both allocated and unallocated space
- Do not use gzip/tar or normal backup tools
 - Lose unallocated space
 - Can't recover deleted files
- How to do it?
 - Live system vs dead system image?
 - Full disk vs Partition?

Disk Image

- Live system image vs Dead system image?
 - Helix Live CD or FCCU Live CD
 - Or USB
 - Writeblocker?

Disk Image

- Full disk vs. Partition?
- Full disk if possible
 - Get everything in one go
 - Can copy host protection area HPA (after reset)
 - Might not be feasible
 - RAID system: too big, RAID reconstruction?
- Image only partition
 - OS partitions

Disk image

- Linux dd command
 - Full disk
 - dd if=/dev/sda of=/mnt/usb/sda.img bs=512
 - Partition
 - dd if=/dev/sda1 of=/mnt/usb/sda1.img bs=512
- Enhanced dd e.g. dc3dd or dcfldd
 - <u>http://dc3dd.sourceforge.net/</u>
 - <u>http://dcfldd.sourceforge.net/</u>
 - dcfldd if=/dev/sourcedirve hash=md5 hashwindow=10M
 md5log=md5.txt bs=512 of=driveimage.dd
- dd_rescue
 - http://www.gnu.org/software/ddrescue/ddrescue.html

What to do with disk images?

- Mount disk image/partition to the loop device on a forensic workstation in READ ONLY mode
 - mount -o loop, ro, offset=XXXX disk_image.dd /mnt/mount_point
- Partition information can be obtained
 - sfdisk –I disk_image.dd
 - fdisk lu disk_image.dd
 - mmls –t type disk_image.dd
 - In the TSK toolset
- Either work on the whole image
 - Use the "offset" parameter
- Or, split the image to individual partitions and then mount them separately
 - dd if=disk_image.dd bs= 512 skip=xxx count=xxx of=partition.dd

Evidence Collection

- Memory dump;
- Network status;
- Process dump;
- Other system information;
- Disk images;
- Forensic analysis done on the images NOT on the original disk;

After Evidence Collection

- Mount disk/partition images on a trusted system
- Timeline analysis with TSK
 - What had happened?
- Media (e.g. file system) analysis with TSK
 - What was modified/changed and or left?
- String search on both allocated and unallocated areas with strings
- Data recovery with TSK
 - What was deleted?
- Artifact (malware) analysis
 - To understand the function of the malware
- Sharing findings with relevant parties

Incident Handling Lifecycle

Preparation

Identification

Containment

Eradication

Recovery

Lesson-learned

Step 4 Eradiation

- Remove compromised accounts
- Revoke compromised credentials
- Remove malware/ artifact left over by the attackers
- Restore from most recent clean backup
- If root-compromised, rebuild system from scratch
- Harden, patch system to prevent it from reoccurrence

Incident Handling Lifecycle

Preparation

Identification

Containment

Eradication

Recovery

Back to production

Lesson-learned

Recovery

- Put system back to production in a control manner
- Decision should be made by management
- Closely monitoring the system

Incident Handling Lifecycle

Preparation

Identification

Containment

Eradication

Recovery

Lesson-learned

Step 6 – Lesson learned

- Know what went right and what went wrong
 - Learning & improving
 - A post-mortem meeting/discussion

Thanks

7/03/2010 37

DEMO

How to detect rootkit in a live Linux system?

7/03/2010

The rootkit

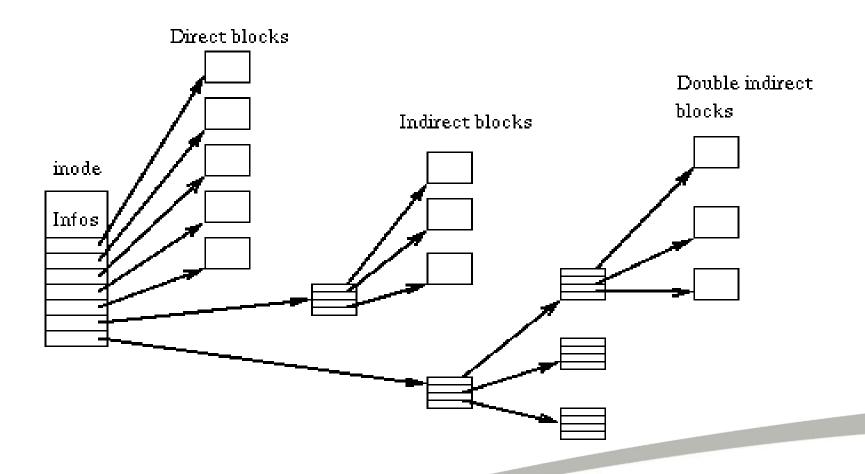
- Captured in last year incident
- Kernel mode rootkit with sniffing backdoor
- Hide itself and relevant files from normal detection
- Can survive from system reboot
- Protected with password

DEMO

7/03/2010 40

EX2/EX3 file system premier

Superblock


 Block size, number of blocks, number of Inodes, number of reserved blocks, number of blocks per group, number of Inodes per Group

Block Groups

- All blocks belong to a Block Group
- Begins from block 0, after reserved blocks
- Each Block Group
 - Superblock backup
 - Group Descriptor Table
 - Block Bitmap, Inode Bitmap
 - Inode Table, Data Blocks

EX2/3 Meta Data structure

Directories

- Directory itself is a file
- A sequence of entries
 - Inode number
 - File name
 - Size of file name

Byte Offset	Inode Number	File Names
0	80	
16	8	
32	1674	init
48	69	fstab
64	1978	passwd
80	115	group

