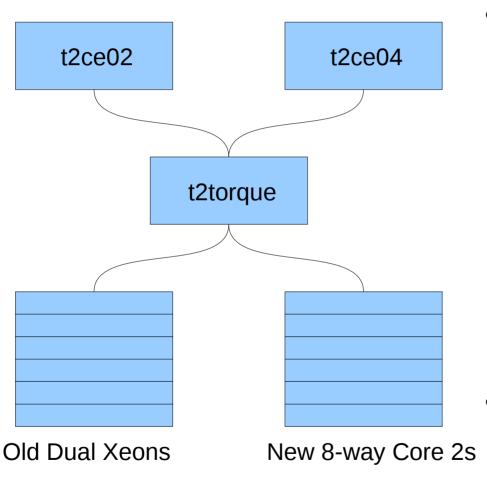


Oxford Particle Physics HepSysMan 2008

Site Report

Grid cluster: UKI-SOUTHGRID-OX-HEP



- New hardware bought in September 07, 176 CPU cores, ~100Tb of storage.
- 11 'twin' units
 - 22 WNs,
 - 2GB per core
- 11 disk servers
 - 14 750Gb disks
 - RAID 6
 - Plus RAID pair of 250Gb OS disks

Dual CE/Subcluster setup

- The system has seven queues:
 - shortdual
 - mediumdual
 - longdual
 - shortoct
 - mediumoct
 - longoct
 - express
- Each CE advertises appropriate queues and properties.
- Express jobs can run anywhere.

Grid cluster - Interesting bits (

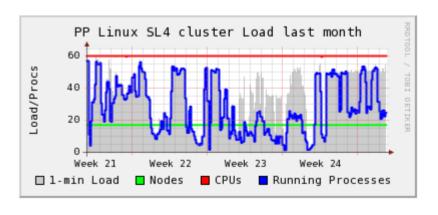
- We use virtual machines for several service nodes:
 - All CEs, torque server, monitoring server, BDII.
 - The MON will be but isn't yet.
 - The SE front end isn't and probably won't be.
- The SE front end was recently upgraded from an SL3 system to an SL4 system on new hardware.
 - We had a preparatory saga with dpm-drain
 - But the actual upgrade went remarkably smoothly.
 - Except for an apparantly wide-spread and harmless information system bug.
- We moved all the kit to our new room at Begbroke Science Park.
 - By doing it in stages we managed it with only a day and a half's site downtime.
- The MON, BDII and (soon to die) t2ce03 are the only remaining SL3 nodes.

Smokin'

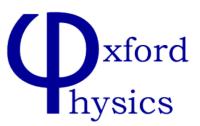
- We had one machine exhibit the (now) fairly well known Supermicro exploding disk server bug.
 - Affected part was replaced pretty quickly, others still pending a preventative replacement.

Local cluster storage

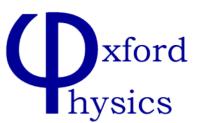
- We have three data fileservers:
 - pplxfs2: ~20Tb over three Infortrend SCSI arrays (RAID5)
 - pplxfs3: ~8Tb as a single 3ware internal RAID (RAID6)
 - pplxfs4: ~20Tb as a single 3ware internal RAID (RAID6)
- All are running ext3 over LVM, but (clearly) we can't manage storage between servers.
- We're considering clustering options GFS, Lustre, OCFS, others?

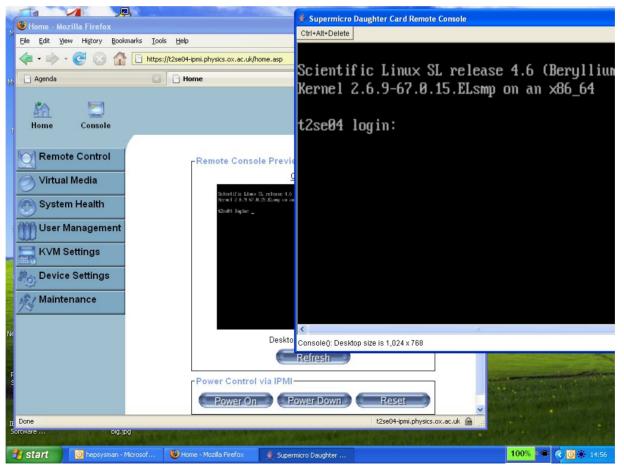


Local cluster worker nodes



- The local cluster has a total of 60 processors
 - 32 are in a pair of 'twin' worker nodes
 - the rest are old dual processor nodes
- All runs a dead simple setup with NIS user accounts, NFS mounted home and data areas.
- Configured with kickstart, cfengine and some small scripts. We can nuke a node and having back and running in a few minutes.
- Not as consistently busy as it could be.
 - Considering filling in with some kind of grid job.


Supermicro 'Twins'


- Each twin has a single PSU feeding two motherboards.
- Ours have the optional KVM over LAN IPMI cards.

 IPMI card allows 'local console' access, including to the BIOS. Really great in principle, mostly good in practice, occasionally painful.

Odds and ends

- We used Amazon's EC2 system to great effect to test scalability of a research group's code.
 - It allowed us to create an image then boot n instances of it.
 - We got n up to just under a thousand, at a total project cost of about £150
- We had a user with particularly IO heavy jobs running over a static dataset. We rsync-ed the data to some WN's local disks, which worked, but there has to be a better way.
- Extra SL repositories; consider Fedora EPEL as an alternative to Dag; it works for us.
- Nexsan 'SATABeast' Fibrechannel RAID arrays we don't have any.
 Do you?