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Abstract

The current status is summarised of dark matter searches at the UK Boulby Mine based on pulse shape discrimination
in NaI, together with further plans for international collaboration on detectors based on nuclear recoil discrimination in
liquid and gaseous xenon. ( 1998 Elsevier Science B.V. All rights reserved.

PACS: 95.35.#d

1. Boulby Mine and programme objectives

The Boulby Mine is a working salt and potash mine in the North—East of England. The mine
operators, Cleveland Potash Ltd., have provided access to several disused tunnels and caverns in
low background salt rock, as a permanent location for the UK underground physics programme.
These have been provided with power, lighting, telephone, fibre-optic data links, flooring and
control rooms as a basic infra-structure for all experiments, and shielding systems have been
installed consisting of (a) a 6m tank of purified water and (b) a number of shielding castles built
from a 20 cm outer lead shield and a 10 cm copper inner shield.
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The object is to search for a continuous spectrum of nuclear recoil pulses with energies (50keV
from WIMP collisions. This requires methods of distinguishing these from the much higher gamma
background. Our current and planned programme includes both NaI and Xe targets to cover the
WIMP mass range 10—1000GeV.

The Boulby facility has so far been used specifically to run WIMP searches based on pulse shape
discrimination in sodium iodide targets, summarised in Section 2. The available space is now being
increased to accommodate liquid xenon experiments to be carried out in collaboration with the
UCLA/Torino groups [1], as described further in Section 3. Future more advanced liquid xenon
detectors may involve a larger collaboration including the ITEP group [2]. This is referred to as
the ZEPLIN programme. The available space would also accommodate much larger detectors
with directional sensitivity, based on observation of tracks in low pressure gases. Studies of this are
in progress in collaboration with Temple, UCSD, and other groups [3,4]. This scheme is named
DRIFT (directional recoil identification by formation of tracks).

The mine contains many kilometers of disused salt caverns, some of which would be available for
neutrino physics experiments. These are outlined in a separate paper. The present paper reports the
current and planned dark matter programme.

2. Dark matter searches with NaI targets

Experiments have been based on NaI crystals, 2—10 kg in mass, observed with two photomultip-
liers and silica light guides, all materials being selected for lowest activity. Calibration with neutron
and gamma sources shows that nuclear recoil pulses have a decay constant about 70% that of
Compton gamma interactions. The pulse time constant distributions have a significant width due
to the small number of photoelectrons (typically 3—6 per keV) so that at low energies the nuclear
recoil and gamma distributions overlap. An initial phase of work with a water-shielded 5 kg crystal
showed that a factor 10—30 below gamma background could be set as a statistical limit on
a population of the shorter pulses [5].

The stability and resolution of this detector has been improved by larger PMTs, shorter light
guides, and a stabilised and reduced operating temperature (10°C$0.1°C). Gamma sources are
lowered automatically into the shielding tank to provide energy calibration once a week and
Compton calibration for 5 h each day. A running period of 4000h (excluding calibration periods)
between August 1996 and October 1997 has been analysed. The improved resolution reveals
a small population of pulses of shorter time constant (mean &230 ns), distinct from the gamma
time constant distribution (mean 360 ns) and close to the time constant observed for neutron-
induced recoils. The shorter pulses are absent in the periods of Compton calibration (Fig. 1)
suggesting that they are not an analysis artefact. For further confirmation, these are also seen in
a second crystal (made from the same material) but with less good resolution. The shorter pulses
are otherwise normal in shape, with photoelectrons distributed equally between PMTs so they
could in principle be low-energy alpha events. Fig. 2 shows the energy spectrum of these events
together with the spectrum of normal high energy alphas (due to U & Th impurities) from a data
run extended to 5MeV. Their number appears much larger than would be expected from
photodisintegration of iodine by gammas above 2.6MeV. Neutron events at this rate are excluded
by the water shielding and low flux of muons at 1100 m.
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Fig. 1. Time constant distributions (normalised to unity) for 5 kg NaI crystal: (upper graph) Background distribution
showing additional population of shorter pulses; (lower graph) Compton calibration with 60Co source (5 h each day).
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Fig. 2. Energy spectrum of unidentified events compared with high-energy alpha spectrum.

There is so far no explanation of this additional population of events. Further data runs are
being made, with different sized crystals, to establish whether the spectrum and events/mass is
similar for all crystals. It is of interest that there appears to be a significant summer—winter
difference. In the energy range 20—60keV there are approximately 700 events in 70 days in the
summer period, compared with 600 events in 70 days in the winter period. This demonstrates that
the care is needed in investigating annual modulation, since any spurious signal (for example
alphas) could also show differences over several month periods for a variety of reasons. A second
winter run is currently in progress.

The energy spectrum of the anomalous events falls less rapidly than expected for a dark matter
spectrum based on a Galactic velocity dispersion 230 km/s. Summing predicted Na and I spectra
with appropriate form factors [6]) approximate agreement can be achieved only with a high
velocity dispersion '300 km/s for the Galactic dark matter, together with a dark matter particle
mass '200GeV. This differs from the mass (100 GeV deduced from the marginally significant
annual modulation reported by the Rome group [7]. Thus we continue to search for an explana-
tion in terms of normal particles.

A number of ideas are being investigated to further improve the performance of NaI detectors,
including optical coupling of unencapsulated crystals with liquid paraffin [4].

3. The sodium iodide diagnostic array (‘NaIaD’)

The above situation emphasises the need for dark matter experiments to have good diagnostic
capability, to allow investigation of spurious events which may mimic a dark matter signal. In
particular, one needs:

(a) A principal target with good energy resolution and minimum background.
(b) Targets of different size, to investigate proportionality with mass.
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Fig. 3. Array of NaI detectors for diagnostic studies of signal-like events.

(c) Targets with data acquired over different energy ranges — e.g. 0—50, 0—500, 0—5MeV, to
investigate energy cut-off and higher-energy background, such as MeV-range alphas.

(d) Targets of the same size in different shielding systems, to investigate internal origin.
(e) A larger multi-crystal array for faster data acquisition and annual modulation search.
(f) Where possible different target nuclei, or isotopic variations, to study spin-dependence.
Our present underground array contains (a), (b), (c), (d) but not yet (e) due to funding limits

(Fig. 3). Item (f) is not currently possible with NaI targets (since the Na and I recoils cannot be
distinguished), but can be achieved more easily in experiments using Ge [8] and Xe [9] targets
where stable odd and even isotopes can be separated.

4. Liquid xenon detectors

Liquid xenon allows a variety of ways of separating nuclear recoils from background, owing to
the production of both scintillation light and ionisation:

1. the ionisation may be allowed to promptly recombine, adding to the scintillation light and
giving differences in scintillation pulse shape [10],

2. an electric field can be used to prevent recombination, the charge being drifted to create a second
scintillation pulse S2 in addition to the primary pulse S1. The ratio S2/S1 differs for nuclear
recoils and gammas [11],

3. the charge in (ii) can be extracted from the liquid surface to the gas phase, and accelerated to give
a larger secondary scintillation pulse [1],

4. all signals may be enhanced by TEA amplification, the shape of the initial charge distribution
producing a difference in geometric light distribution [1].
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Fig. 4. Single-phase liquid Xe detector.

These permit a much greater degree of background discrimination than in the case of NaI pulse
shape. As a first step we are constructing a 5 kg detector based on (i) for running experience at
Boulby (Fig. 4). Following this, the objective is to construct and operate a 20—30kg detector based
on method (iii) in collaboration with the UCLA and Torino groups (Fig. 5). This is planned to be
running by the year 2000. Each detector will be located inside a 30 cm thick liquid scintillator
Compton veto, to reduce both photomultiplier and ambient background. Discussions are in
progress for a further detector based on method (iii) or other design variations [2].

5. The Xe diagnostic array (ZEPLIN collaboration)

As in the case of NaI, it is essential to be able to view any candidate signal or anomalous event
population in Xe in several different detectors, in order to investigate its behaviour and origin. The
above principles allow not only different types of Xe detector, but also diagnostic procedures in
a given detector, in particular varying the electric field used to drift the charge. It would also be
possible to run the detectors with different Xe isotopes. Fig. 6 shows the array of detectors which
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Fig. 5. Two-phase ZEPLIN detector in scintillator veto.

Fig. 6. Proposed array of Xe detectors for signal diagnosis.
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could result from our programme and which would provide varying target mass and discrimina-
tion technique, giving excellent overall diagnostic capability.

Included in Fig. 6 is the possibility of ultimately adding a Xe gas target to verify directionality in
the Galaxy, through the collaborative DRIFT programme mentioned in Section 1. In this connec-
tion it is of interest that the Boulby Mine happens to be located at the ideal latitude for directional
experiments, the rotation of the earth automatically providing orientations parallel, anti-parallel
and perpendicular to the Galactic motion for a detector placed with axis horizontal relative to the
earth’s surface [12].
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