Current status of dark matter searches at the Boulby facility

Boulby Programme Boulby Facility NaIAD Status ZEPLIN I Status ZEPLIN III Status ZEPLIN MAX Future

N.J.T.Smith CCLRC Rutherford Appleton Laboratory On behalf of Boulby DM Collaboration

Boulby DM Programme

A place to find WIMPs

- Surface facilities
 - Workshop, offices, etc.
- Underground facilities
 - New clean area, upgrade existing
- Opened April '03 by Lord Sainsbury
 - With a place in the Sun

The DRIFT Laboratory

- 6 unencapsulated, 2 encapsulated
- Light yield 5 9 p.e./keV
- Temperature stabilised to 0.1°C
- Threshold 1-1.5 keV
- DAQ based on Acquiris C-PCI 100MHz digitisation (replaced Lecroy DSO)
- Unencapsulated crystals
 - Removal of fast anomalous events (radon induced low energy alphas)
 - Operated in dry nitrogen, 1cm PTFE cage, quartz light guides

2000/01 Spin dependent cross section

Astroparticle Physics **19** (2003) 691-702

• Part of detector response matrix

- 17% best, 14% bulk
- Falls to 4% below Xe delivery pipe
- Light collection simulations allow S3 calculations
- S3 cut < 0.408
 - (66% on 1: 0.5 + 0.5/3)
- Fiducial volume 3.1kg
 - (excluding turrets + ~1cm below)

Uniformity, light collection

ZEPLIN I Discrimination

Remove the background

- Surface neutron calibrations to 3keV_{ee}
- Surface ambient neutrons below 10keV_{ee}
- Ratio held at $0.5 < 7 \text{keV}_{ee}$ (conservative)
- Fitted Γ density function in $1/\tau$
- Underground gamma calibration to 2keV
- Consistent with beam tests (0.6@15keV_{ee})
- Check on efficiency of PMT noise cuts

ZEPLIN I low Kr level

- Background with standard Xe: estimated ⁸⁵Kr < 10⁻¹⁷ atoms/atom, spec: 5ppm
- Now using Xe with 40ppb Kr impurities (specification).
- 16 d of high light yield data
 2.5 pe/keV (vs 1.4-1.8 before)

- Background reduction
- Source of remaining?

No Cuts

ZEPLIN I Data Runs

- 3 data sets, 91 day livetime, 290kg.days
 - Light yield >1.5 p.e./keV (2.5 p.e./keV best)
 - Gamma calibration data from contemporaneous veto events and extended source calibration
 - Neutron calibration from surface data
- Analysis: look for deviation at end of tail

ZEPLIN I SI limit

- Based on lab neutron discrimination
 - To be re-done underground
- Nuclear physics
 - Quenching (0.2@8keV_{ee})
 - Form factor
- Efficiencies incorporated
 - Poisson trigger
 - Light collection response
 - Energy resolution
 - PMT noise cuts
 - Fiducial volume (S3)
 - Dead-time
- 'Standard' DM model

Preliminary. Paper in preparation

ZEPLIN III

- 2 phase detector, 31x 2" PMT
 - Reverse field for PMT Xrays
 - Position sensitivity
 - PMTs in liquid
- High E-field to extract ionisation from nuclear recoils
 - Nuclear recoil S1 and S2
- 7kg target under construction
- Deployment 2004
- Study for 1 tonne
 - Low threshold (S2 trigger)
 - High light yield
 - Fiducialisation, imaging

ZEPLIN MAX and Future

- ZEPLIN MAX detector
 - 1 tonne active volume, target sensitivity 10⁻¹⁰pb
 - Input from ZEPLIN I operational experience
 - ZEPLIN II/III progenitors for design info
- Issues
 - Operational mode
 - Readout technology (U/Th background)
 - Background suppression
 - active muon/neutron veto
 - passive shielding
 - detector design
 - purity requirement

Summary and Future

- Facility construction completed
 - Neutron measurements underway
- NaIAD array fixed operation
- ZEPLIN I
 - Extended underground Compton calibration
 - Surface neutron calibration reanalysis
 - Additional 50kg.days from IDM02 data
 - Higher light yield
 - Efficiency calculation and simulations
- Future ZEPLIN I Programme
 - Underground n calibration
 - Full MC cross check of efficiencies
 - Low energy xenon quenching measurement
- ZEPLIN II/III/MAX
 - Commissioning/operation of progenitors
 - R&D+Design for tonne scale detector

