Using an Object Oriented Database to Store BaBar's Terabytes

Tim Adye

Particle Physics Department
Rutherford Appleton Laboratory
CLRC

Outline

- The BaBar experiment at SLAC
- Data storage requirements
- Use of an Object Oriented Database
- Data organisation
- SLAC
- UK
- Future experiments

- The BaBar experiment is based in California at the Stanford Linear Accelerator Center, and was designed and built by more than 500 physicists from 10 countries, including from 9 UK Universities and RAL.
- - If this "CP Violation" is large enough, it could explain the cosmological matterantimatter asymmetry.
- We are are looking for a subtle effect in a rare (and difficult to identify) decay, so need to record the results of a large numbers of events.

A BaBar Event

How much data?

- Since BaBar started operation last May, we have recorded and analysed 210 million events.
 - 48 million written to database
 - remainder rejected after analysis
 - At least 4 more years' running and continually improving luminosity.
 - Eventually record data at ~100 Hz;
 ~10⁹ events/year.
 - Each event uses 100-300kb.
 - Also need to generate 1-10 times that number of simulated events.
- Database currently holds 33 Tb
 - Expect to reach ~300 Tb/year
 - le. 1-2 Pb in the lifetime of the experiment.

Why an OODBMS?

- BaBar has adopted C++ and OO techniques
 - The first large HEP experiment to do so wholesale.
- An OO Database has a more natural interface for C++ (and Java).
- Require distributed database
 - Event processing and analysis takes place on many processors
 - 200 node farm at SLAC
 - A single data server cannot cope
- Data structures will change over time
 - Cannot afford to reprocess everything
 - Schema evolution
- Objectivity chosen
 - Front runner also at CERN

How do we organise the data?

- Traditional HEP analyses read each event and select relevant events, for which additional processing is done.
 - Can be done with sequential file
 - Many different analyses performed by BaBar physicists.
- In BaBar there is too much data.
 - Won't work if all the people to read all the data all of the time.
 - Even if all of it could be on disk.
- Organise data into different levels of detail
 - Stored in separate files
 - tag, "microDST", "miniDST", full reconstruction, raw data
 - Objectivity keeps track of cross-references
- Only read more detailed information for selected events.
 - But different selections for different analyses

What happens at SLAC?

- Cannot store everything on disk
 - Maybe 10 Tb, but not 1 Pb.
 - Already buying ~1 Tb disk per month.
- Analysis requires frequent access to summary information.
 - Keep tag and "microDST" on disk
 - More information for most interesting events on disk
 - Rest in mass store (HPSS at SLAC)
- In future even this may not be enough
 - Only tag and "dataset of the month" on disk?

Performance

- Main challenge is getting this to scale to hundreds of processes/ors reading and writing at the same time.
 - The vendor seems to believe we can do it.
 - "The Terabyte Wars are over
 While other vendors quarrel about who can
 store 1 Terabyte in a database, the BaBar
 physics experiment at the Stanford Linear
 Accelerator Center (SLAC) has
 demonstrated putting 1 Terabyte of data
 PER DAY into an Objectivity Database."
 - Top news item on *Objectivity* web site
 - But it took a lot of work...

Performance Scaling

 A lot of effort has gone into improving speed of recording events

 Ongoing work on obtain similar improvements in data access.

Regional Centres

- Cannot do everything at SLAC
 - Even with all the measures to improve analysis efficiency at SLAC, it cannot support entire collaboration.
 - Network connection from UK is slow, sometimes very slow, occasionally unreliable.
- Therefore need to allow analysis outside SLAC.
 - "Regional Centres" in UK, France, and Italy.
 - RAL is the UK Regional Centre.
- Major challenge to transfer data from SLAC, and to reproduce databases and analysis environment at RAL.

UK Setup

- At RAL, have Sun analysis and data server machines with 5 Tb disk
 - UK Universities have 0.5-1 Tb locally
 - All part of £800k JREI award
- Import microDST using DLT-IV
 - ~50 Gb/tape with compression
 - So far exported 2 Tb
- Interfaced to Atlas Datastore (see Tim Folkes' talk).
 - Less-used parts of the federation can be archived
 - Can be brought back to disk on demand
 - needs further automation
 - Also acts as a local backup.

Other Experiments

- BaBar's requirements are modest with respect to what is to come.
- 2001 Tevatron Run II
 - ~1 Pb/year
 - CDF JIF (Joint Infrastructure Fund) award
 - Regional Centre at RAL
- 2005 4 LHC Experiments
 - many Pb/year
 - Prototype Tier 1 centre at RAL
 - 3100 PC99, 125 Tb disk, 0.3 Pb tape, 50 Mbps network to CERN
 - Tier 2 centres at Edinburgh and Liverpool
 - Require ~5 times more at startup

Future Software

- Choice of HSM.
 - HPSS is expensive. Maybe we don't need all the bells and whistles.
 - But already in use at SLAC/CERN/...
 - EuroStore (EU/CERN/DESY/...)
 - ENSTORE (Fermilab)
 - CASTOR (CERN)
 - LHC Experiments still have time to decide...
- Is Objectivity well-suited to our use?
 - Develop our own OODBMS?
 - Espresso (CERN)
 - BaBar is being watched closely...