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Administrative Points

e Three lectures now, two at end of term
* Notes for first part on web

— A couple of typos in Table 1

— Let me know if you find more!

— Will update notes
e Accompanying problem set

— Ready on Monday

Mass of a proton ~ 1 GeV/c? ~ 1.7 x l@g

_ ~ _1
QX = Treghic ~ 137
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Introduction

 Heisenberg, de Broglie, Boltzmann, Big Bang:
High momentum <> small distance < high temperature < early universe

 Need sources of high energy particles and techniques to examine their
interactions

e Natural units are natural for some calculations

* Not so natural for others: try ordering 5x10° GeV-! thick aluminium!
— Use whichever units are most convenient (cm, MS$, mb....)
— Know how to convert

— Use common sense
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Useful Values

e In natural units
— energy and momentum are measured in GeV

— length and time are measured in GeV-!
— 1 =197 MeV.fm

e Proton mass ~ 1 GeV/c?~ 1 amu
 Fine structure constant o ~ 1/137
e Speed of light = 1 foot per nanosecond
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Natural Radioactivity

First discovered in late 1800s

Used as particle source in many significant experiments

— Rutherford’s 1906 experiment: elastic scattering a+N— a+N

— Rutherford’s 1917 experiment: inelastic scattering a+N— p+X
Common radioisotopes include

— SFe: 6 keV y

— M8r: 500 keV B

— 24lAm: 5.5 MeV «
Easy to control, predictable flux but low energy

Still used for calibrations and tests
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Cosmic Rays

 Low energy cosmic rays from Sun
— Solar wind (mainly protons)
— Neutrinos

 High energy particles from sun,
galaxy and perhaps beyond

— Neutrinos pass through atmosphere and
earth

— Low energy charged particles trapped in
Van Allen Belt

— High energy interact in atmosphere

— Flux at ground level mainly muons:
100-200 s m

* Highest energy ever seen ~10*’eV
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Cosmic Experiments

 Primary source for particle physics experiments for decades
* Detectors taken to altitude for larger flux/higher energy
e Positron and many other particles first observed

Modern experiments include:

e Particle astrophysics

— Space, atmosphere, surface,
underground

* Neutrino
— Solar, atmospheric

e “Dark Matter” searches

Still useful for calibration and testing
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Reactor Experiments

e Huge fluxes of MeV neutrons

and electron neutrinos

First direct neutrino
observation

New results on neutrino
oscillations

Joel Goldstein, RAL
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Particle Sources

Want intense monochromatic beams on demand:

Hydrogen gas bottle

1. Make some particles
 Electrons: metal + few eV of thermal energy
 Protons/nuclei: completely ionise gas

2. Accelerate them in the lab
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DC Accelerators

Van de Graaff at MIT
Cockroft and Walton’s
Original Design
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Cyclotrons

e DC accelerators quickly become impractical

— Air breaks down at ~\1MV/m
e Utilise motion in magnetic field:

p = kgBR
 Apply AC to two halves

 Lawrence achieved MeV particles
with 28cm diameter

 Magnet size scales with
momentum...

e Still used for medical purposes
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Linear Accelerators

For energies greater than few MeV:

[tomward

® use mUItiple Stages theright] + —3p amount of energy boost

* REF easier to generate and handle

Electric Pasition

 Bunches travel through resonant cavities r.y © XN\
[

egative particles
* Spacing and/or frequency changes with

velocity b -
e Can achieve 10MV/m and higher
e 3km long Stanford Linac reached 45 GeV

e— Bunch Cloud
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Superconducting Cavities

SRR e =

s
-

R TR .. .. N2, SO, 2. NN, ., .. NN WM.
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Synchrotrons
p = kgBR

Cyclotron has constant B, increasing R

Increase B keeping R constant:
— variable current electromagnets

— particles can travel in small diameter
vacuum pipe

— single cavity can accelerate particles each
turn

— efficient use of space and equipment
Discrete components in ring

— cavities

— dipoles (bending)

— quadrupoles etc. (focusing)

— diagnostics

"/ ACCELERATING CAVITY

~J

BENDING MAGNET

— control
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A Real Synchrotron

e LEAR - a particle decelerator and storage ring
*  Why aren’t all accelerators synchrotrons?
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Synchrotron Radiation

Accelerated charges radiate

. 1 e2p?
Average power loss per particle: P = €Y a4

6meg 2 R2

Quantum process — spread in
energy

For a given energy ~ 1/mass*
Electron losses 1013 times proton

— High energy electon machines
have very large or infinite R

Pulsed, intense X-ray source may
be useful for some things....
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Fixed Target Experiments

.~ Beam incident on stationary target

Interaction products have large
momentum in forward direction

Large “wasted” energy < small \s
Intense beams/large target = high rate
Secondary beams can be made
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Neutrino Beams

Target Service MINOS To Soudan
Building Service -\

~—Main Injector Building ——
\\'\"" = - . T = V
Carri — = 2
Tunnel @M Pion -

Ainos Hall

Minos Near
Detector

Targes o bea Beam Abserber

* Fermilab sends a muon-neutrino
beam to Minnesota

* Looking for oscillations
e Detector at bottom of mine shaft
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Antiparticle Production

. Positrons and antiprotons produced in fixed target collisions
— typical efficiency 10° protons per antiproton

. Large phase space — must be “cooled”
— synchrotron radiation damps electrons
— antiproton cooling techniques won Nobel (see LEAR photo)

. Decelerated and accumulated in storage rings
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Colliders

Incoming momenta cancel

\s = 2E am

Same magnetic field deflects opposite charges in opposite
directions = Antiparticle accelerator for free!

— particle/antiparticle quantum numbers also cancel

Technically challenging

Luminosity £ = fnin,/A e +d

particle particle

Interaction rate = Lo detector
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Different Colliders

e p pbar

— energy frontier

e £+ e-

— — relatively easy analysis

— difficult to interpret =— — high energies difficult

— limited by pbar production

— LEP, PEP...
— SPS, Tevatron
[ e p
° pp — proton structure
— high luminosity - HERA
— energy frontier
- LHC e jon ion
— quark gluon plasma
° IU+ lu. - RH'C, LHC
— some plans exist e VvV

—
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Collider Parameters

CESR CESR-C KEKEB PEP-1I LEF
(Cornell) (Cornell) (KEK) (SLAC) (CERN)
Physics start date 1979 2002 1999 1999 1989
Physics end date 2002 2000
e”: 712 (9.0 nominal) 101 in 1999
Maximum hbeam energy (GeV) G G e~ wet: Bxi3h et: 254 (3.1 ) (105=max.
(nominal Eemp = 10.56 GeV) foreseen
Luminosity (10°7 em—2s—1) 1280 at 35 at 11305 6777 24 at ZY
5.3 GeV /heam 1.9 GeV /beam 100 at = 90 GeV
Time between collisions (ps) 0.014 to 0.22 0.014 to 0.22 0.008 0.0042 22
Full details at pdg.lbl.gov
HERA TEVATRON RHIC LHC
(DESY) {Fermilab) (Brookhaven) (CERN)
Physics start date 1992 1087 2000 2007 2008
Physies end date
Particles collided ep p pp (pol.) An Au d Au op Pb Pb
Mzximim beam e: 0.030 0.980 0.1 0.1 TeV/u 0.1 TeV/u 7.0 2.76 TeV /u
energy (TeV) pe 0.92 40% pol '
Luminosity = - 4
. 5 5l & 0.0004 0.07 1.0 10 0.001
(109 em—2s—1) -
bl o Lol 0.006 0.39 0.213 0.025 0.100
collisions (ps)
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Inside the Tunnels

 Underground for shielding and
stability

Focusing Magnet

Concrete Dipole
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Complexes

 Synchrotrons can’t accelerate particles from rest
* Designed for specific energy range, normally about factor of 10
— accelerators are linked into complexes

LEP/LHC
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Next Time...

Charged particle interactions and detectors

Joel Goldstein, RAL PHYS6011, Southampton
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