PHYS6011 Experimental Problem Set SOLUTIONS

Part II

1. The frequency of an event occurring is given by

$$f = \mathcal{L}\sigma$$

so for $b\overline{b}$ production with $\sigma \sim 10 \ \mu b$

$$f = 50 \times 10^{30} \times 10 \times 10^{-6} \times 10^{-24} = 500 \text{ s}^{-1}$$

Similarly a W is produced with a frequency of $0.5 \, \mathrm{s}^{-1}$ or one every 2 s, and a top quark pair with a frequency of $5 \times 10^{-4} \, \mathrm{s}^{-1}$ which is about once every half hour.

2. In SI units: $\tau = \hbar/\Gamma \approx 4 \times 10^{-25}$ s. Hadronisation takes place at a scale of $\Lambda_{QCD} \approx 200$ MeV corresponding to a length scale of 1 fm (remembering that $\hbar c \approx 200$ MeV fm) and a time scale of 1 fm/ $c \approx 3 \times 10^{-24}$ s. This means that top quarks will decay approximately ten times faster than hadrons will form.

Notice that in natural units time and distance are both measured in GeV^{-1} , so the top lifetime is just $1/1.5 \approx 0.7 \text{ GeV}^{-1}$.

- 3. Since $Br(W \to l\nu) = 10\%$ per lepton, 20% of top decays will be to an electron or muon. The probability of an event with both tops decaying this way is then $0.2 \times 0.2 = 4\%$.
- 4. (a) The four momentum of a particle with energy E traveling in a direction in spherical coordinates (θ, ϕ) is

$$(E, p_x, p_y, p_z) = (E, p \sin \theta \cos \phi, p \sin \theta \sin \phi, p \cos \theta)$$

where the magnitude of the 3-momentum for a particle with mass m is $p = \sqrt{E^2 - m^2}$. This gives the four momenta (in GeV):

 $\begin{array}{lll} b_1 & : & (145,-1,-43,139) \\ b_2 & : & (90,85,-17,24) \\ j_1 & : & (125,-49,85,78) \\ j_2 & : & (15,-2,-15,-2) \end{array}$

(b) By four momentum conservation, the sum of the momenta of j_1 and j_2 gives the momentum of the parent X in the decay $X \to j_1 j_2$, so

$$p_X = (140, -51, 70, 76) \text{ GeV}$$

and

$$m_X^2 = p_X^2 = 140^2 - 51^2 - 70^2 - 76^2$$

 $\Rightarrow m_X = 80 \text{ GeV}$

This is very close to the W mass, so it is likely that the two jets were produced by the quarks in a $W \to q\overline{q}$ decay.

(c) We can calculate the invariant mass of the top in a similar fashion for the possible $t \to Wb$ decays. Adding the b_1 four momentum to that of the W from the previous section gives

$$p_1 = (285, -52, 27, 216) \Rightarrow m_1 = 176 \text{ GeV}$$

Combining the W and b_2 gives

$$p_2 = (230, 34, 53, 100) \Rightarrow m_2 = 197 \text{ GeV}$$

The first mass is consistent with the top mass, so it is probable that b_1 and the two light quark jets come from the same top decay.

5. (a) The total error, σ_{tot} is obtained by adding the systematic and background statistical error (= $\sqrt{N_B}$) in quadrature, so

$$S = \frac{N - N_B}{\sigma_{tot}} = \frac{30 - 17}{\sqrt{5^2 + 17}} = 2.0$$

(b) In a total data sample of $n \times 200 \text{ pb}^{-1}$ we can predict $n \times 30$ total events and $n \times 17$ background events, so for a discovery

$$S = 5 = \frac{n \times (30 - 17)}{\sqrt{5^2 + n \times 17}}$$

$$\Leftrightarrow 5\sqrt{25 + 17n} = 13n$$
$$\Rightarrow 169n^2 - 425n - 625 = 0$$

Solving the quadratic gives a requirement of n=3.6, or an extra $2.6\times 200=520~{\rm pb}^{-1}.$