Experimental Particle Physics PHYS6011 Fergus Wilson, RAL

- 1. Introduction & Accelerators
- 2. Particle Interactions and Detectors (2)
 - 3. Collider Experiments
 - 4. Data Analysis

Data Analysis

Extract physics from data
Measure a quantity
Search for new particles

- 1. Basic concepts
- 2. Monte Carlo methods
- 3. Signal
- 4. Backgrounds
- 5. Errors
- 6. Statistics
 - > Higgs search at CDF

Particle Properties

- Properties
 - Mass
 - Measure momentum and energy
 - $\square Mass width \rightarrow Lifetime$
 - Measure momentum and energy or:
 - How many particles exist after t seconds
 - Branching Fraction
 - Reconstruct the decays and see how many there are.
 - Charge
 - Direction in a magnetic field
 - Spin
 - Angular distribution of decays
 - Structure e.g. Proton/Neutron/Nucleus
 - Scatter particles of the proton and look at distribution

Data Flow

High Signal:Background

Low Signal:Background

Elements of Analysis

Not only *Data* but...

- Detector response to signal
- Background estimates
- Errors
- statistical
- systematic
- How to solve?
 - Try and evaluate from data
 - Sometimes need more...
 - Monte Carlo

Monte Carlo

- 1. Generate artificial data
- 2. Simulate detector response
- 3. Analyse simulated data as if it were real
 - Response to known input can be calculated
 - □ Also used in detector design

- Computer intensive
- Must be carefully tuned and checked

Data and Monte Carlo

Search for the Higgs

Higgs Boson - missing piece of Standard Model

- SM Higgs theory well understood
 - Mass is only free parameter
 - Clear predictions to test
- Most new physics theories have something similar
- Current limit is mass > 115 GeV (LEP)
 Some evidence of signal just beyond limit

Can CDF see a Higgs at 120 GeV?

Higgs Production

Gluon fusion most promising

Higgs Decay

- At 120 GeV *H*→*bb* dominates
- Signature $gg \rightarrow H \rightarrow bb$:
 - 2 jets
 - One or two *b*-tags
- Swamped by dijet production
 - □ *bb* ~ µb
 - qq ~ mb (fake b-tag rate small but not zero)
- Have to use *W*/*Z*+*H* channel

Branching Ratio (BR): If produce 10^8 Higgs and measure 20 decays Higgs \rightarrow gg with 0.00025% efficiency then Branching Fraction is:

$$BF(Higgs \to gg) = \frac{N_{decays}}{N_H * \eta} = \frac{20}{10^8 * 2.5 \times 10^{-6}} = 0.08$$

Associated Production

 $qq \rightarrow WH$ with $H \rightarrow bb$

W→qq 70%

- final state qqbb
- Four jet backgrounds still too large

 $W \rightarrow ev_e \quad 10\%$

$$W \rightarrow \mu v_{\mu}$$
 10%

- v) Final state *lvbb*
 - One electron or muon
 - Missing transverse momentum
 - Two jets
 - One or two b-tags
- Easy to select in trigger and offline

σ×Br ≈ 0.02 pb

Efficiency

- Nature provides 20 fb of WH→Ivbb events a handful per year
- How many pass our trigger and analysis selection?
 - □ Cleanly identified electron or muon in acceptance
 - Two jets
 - At least one b-tag
 - □ Large missing momentum
 - None overlapping
 - Run thousands of MC events
 - Efficiency
 - Observe 2 per fb⁻¹ per year

$$\epsilon = rac{N_{selected}}{N_{generated}} pprox 10\%$$

Backgrounds

Anything with signature similar to signal

- W+X (X can be W, Z or just 2 QCD jets)
- $\Box \quad ZZ \rightarrow qql^+l^- \quad (one \ lepton \ not \ identified)$

υ ττ

- □ *b*-tags can be real, charm or fakes
- Estimate how many pass signal selection ⇒ *Monte Carlo*
- Largest is W+bb: about 250 fb
 - Signal to background about 1:100

Errors

Statistical

- Mostly counting events (data or MC)
- Poisson distribution: $\sigma = \sqrt{\mu} \approx \sqrt{N}$
 - NB fractional error ~ $1/\sqrt{N}$
- Efficiency follows binomial distribution:

$$\sigma_{\epsilon} = \sqrt{\epsilon(1-\epsilon)/N}$$

Systematic

- Anything not <u>completely</u> understood may affect result
 - Detector performance, background rates, MC modeling...
- Estimate range of parameter
- Propagate in MC

Significance

- In a given amount of data we expect:
 - N_B background events
 - □ Statistical error on background $\approx \sqrt{N_B}$
 - Systematic error on background = σ_{sys}
 - Add errors in quadrature to get σ_{TOT}
- Observe $N(>N_B)$ events in data. Could be:
 - random fluctuation in $N_B \pm \sigma_{TOT}$ background events
 - N_B background events & N_S signal events
- Significance $S = N_S / \sigma_{TOT}$
 - S = 3: probability of fluctuation $\sim 10^{-3}$ interesting...
 - S = 5: probability of fluctuation $\sim 10^{-5} \text{discovery}!!$

Latest CDF Results

Predicted Sensitivity

- CDF expects a maximum of 8 fb⁻¹ by 2009
 - □ 15-20 signal events
 - 2000 background
 - \Box **S** = 0.3 (ignoring systematics)

- Optimistic, combine channels and experiments predict S ≈ 3
- Higgs-like particles in new theories may be easier
- Really need a new accelerator with higher energy and more luminosity.....

The LHC

- The Large Hadron Collider
 First collisions in 2008
- First collisions in 2008

√s = 14 TeV
 L ~ 10³⁴ cm⁻² s⁻¹

LHC Experiments

- ATLAS and CMS designed to find Higgs
- Good experiments to work on for a PhD.....