Experimental Particle Physics PHYS6011 Southampton University 2008 Lecture 1

> Fergus Wilson, Email: F.F.Wilson at rl.ac.uk

Administrative Points

- 5 lectures:
 - □ 11am : 14th, 21st, 25th, 28th April 2008
 - □ 1pm : 29th April 2008
- Course Objectives, Lecture Notes, Problem examples:
 - http://hepwww.rl.ac.uk/fwilson/Southampton

Resources:

- D. Green, "The Physics of Particle Detectors"
- K.Kleinknecht, "Detectors for Particle Radiation"
- I.R. Kenyon, "Elementary Particle Physics" (chap 3).
- Martin and Shaw, "Particle Physics"
- Particle Data Group, <u>http://pdg.lbl.gov</u>

Syllabus

- 1. Accelerators and Sources
- 2. Interactions with Matter
- 3. Detectors
- 4. A modern particle physics experiment
- 5. How analysis is performed.

Natural Units

- Natural Units:
 - Energy GeV
 - Mass GeV/c²
 - Momentum GeV/c
 - Length and time GeV⁻¹
- Use the units that are easiest.

 $\hbar = c = 1$

 $E^{2} = p^{2}c^{2} + m^{2}c^{4}$ $\implies E^{2} = p^{2} + m^{2}$

Introduction

- Time, energy (temperature) and distance are related:
 - High momentum ⇔
 Small distance ⇔
 High temperature ⇔
 Early Universe

Energy	Time (secs)	Temperature (K)	Observable Size
1 eV	10 ¹³	10 ⁴	10 ⁶ Light Years
1 MeV	1	10 ¹⁰	10 ⁶ km
10 TeV	10 ⁻¹⁴	10 ¹⁷	10 ⁻² mm

 $T_{univ}(K) = \left(\frac{4 \times 10^{17}}{t}\right)^{2/3} \times 2.725 \quad t < 10^{11} \text{ secs}$ $T_{univ}(K) = 2 \times 10^{10} t^{-1/2} \quad t > 10^{11} \text{ secs}$ Boltzmann constant = 8.619×10⁻⁵ eV K⁻¹

Natural Radioactivity

- First discovered in late 1800s
- Used as particle source in many significant experiments
 - □ Rutherford's 1906 experiment: elastic scattering α +N \rightarrow α +N
 - □ Rutherford's 1917 experiment: inelastic scattering α +N→ p+X
- Common radioisotopes include
 - ⁵⁵Fe: 6 keV γ , $\tau_{1/2} = 2.7$ years
 - ⁹⁰Sr: 500 keV β , $\tau_{1/2} = 28.9$ years
 - ²⁴¹Am: 5.5 MeV α , $\tau_{1/2}$ = 432 years
 - ²¹⁰ Po: 5.41 MeV α , $\tau_{1/2} = 137$ days
- Easy to control, predictable flux but low energy
- Still used for calibrations and tests

Cosmic Rays

History

- 1912: First discovered
- □ 1927: First seen in cloud chambers
- □ 1962: First 10²⁰ eV cosmic ray seen
- Low energy cosmic rays from Sun
 - □ Solar wind (mainly protons)
 - Neutrinos
- High energy particles from sun, galaxy and perhaps beyond
 - Primary: Astronomical sources.
 - Secondary: Interstellar Gas.
 - Neutrinos pass through atmosphere and earth
 - Low energy charged particles trapped in Van Allen Belt
 - High energy particles interact in atmosphere.
 - Flux at ground level mainly muons: 100-200 s⁻¹ m⁻²
- Highest energy ever seen $\sim 10^{20} \text{eV}$

$$I_N(E) \approx 1.8 E^{-2.7} \frac{nucleons}{\text{cm}^2 \text{s sr GeV}} \quad E < 100 \text{TeV}$$

Figure 24.4: Spectrum of muons at $\theta = 0^{\circ}$ (\blacklozenge [29], \blacksquare [34], \checkmark [35], \blacktriangle [36], \times and + [31], and $\theta = 75^{\circ} \diamond$ [37]).

GZK cutoff. Should be impossible to get energies above this due to interaction with CMB unless produced nearby => Black Holes <u>http://physicsworld.com/cws/article/</u> <u>news/31764 Nov 2007</u>

Cosmic Ray Experiments

- Primary source for particle physics experiments for decades
- Detectors taken to altitude for larger flux/higher energy
- Positron and many other particles first observed

- Modern experiments include:
- Particle astrophysics
 - Space, atmosphere, surface, underground
- Neutrino
 - □ Solar, atmospheric
- "Dark Matter" searches

Still useful for calibration and testing

Which direction is the e⁺ moving (up or down)? Is the B-field in or out of the page?

Fergus Wilson, RAL

9

14th April 2008

14th April 2008

Fergus Wilson, RAL

Dark Energy and Dark Matter

- Most of the Universe is invisible.
- Dark Energy:
 - Exerts a negative pressure on the Universe
 - Increases the acceleration of the galaxies.
- Dark Matter:
 - Just like ordinary matter but not visible (does not give off light).
- 1: Baryonic Dark Matter
 - □ ~2% of the Universe
 - MACHOS, dwarf stars, etc...
- 2: Non-Baryonic Dark Matter
 - □ ~20% of the Universe
 - Hot (neutrinos) and Cold (WIMPS, axions, neutralinos).
 - Expected to be mostly Cold

Dark Matter - DAMA

http://people.roma2.infn.it/~dama

- 1. As the earth goes round the sun, its velocity relative to the galaxy changes by +/-30 km
- 2. Look for nuclear recoil in NaI as nucleus interacts with "dark matter" particle.
- **3.** Expect to see a change in the rate of interactions every six months
- 4. But is there really a pattern? and is it really dark matter?

14th April 2008

Neutrinos – Nuclear Reactors and the Sun

- Reactors Nuclear Fission
- Sun Nuclear Fusion
- But still weak interactions. Well understood.
- Huge fluxes of MeV neutrons and electron neutrinos.
- But low energy.
- First direct neutrino observation in 1955.

Neutrino density at Earth ~ $5 \times 10^6 cm^{-2} s^{-1}$

Mean free path
$$d$$
:
 $d \approx \frac{u}{\sigma \rho} = \frac{1.66 \times 10^{-27} \text{ kg}}{(10^{-47} \text{ m}^2)(\rho \text{ kg/m}^3)}$
 $\Rightarrow d_{\text{water}} = 18 \text{ light years}$

Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), The University of Tokyo

Neutrinos "Oscillate":

- Can change from one type to another.
- \square Implies v have mass.

$$\left|\nu_{\alpha}\right\rangle = \sum_{i=1}^{3} U_{\alpha i}^{*} \left|\nu_{i}\right\rangle$$

- α = neutrino with definite flavour (e, μ , τ)
- i = neutrino with definite mass (1,2,3)

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \sin^2 2\theta \sin^2 \left(1.267 \frac{\Delta m^2 L}{E} \frac{GeV}{eV^2 km} \right)$$

$$\Delta m_{21}^{2} = \Delta m_{\odot}^{2} = (8.0^{+0.6}_{-0.4}) \times 10^{-5} eV^{2}$$

$$\theta_{21} = \theta_{\odot} = (33.9^{+2.4}_{-2.2})^{o}$$

$$\Delta m_{32}^{2} = \Delta m_{atm}^{2} = (2.4^{+0.6}_{-0.5}) \times 10^{-3} eV^{2}$$

$$\theta_{32} = \theta_{atm} = (45 \pm 7)^{o}$$

$$\theta_{31} = unknown$$

14th April 2008

Fergus Wilson, RAL

Particle Sources

Want intense monochromatic beams on demand:

- 1. Make some particles
 - Electrons: metal + few eV of thermal energy
 - Protons/nuclei: completely ionise gas
- 2. Accelerate them in the lab

DC Accelerators

Cockcroft and Walton's Original Design (~1932)

Fermilab's 750kV Cockroft-Walton

Van de Graaf at MIT (25 MV)

- DC accelerators quickly become impractical
- Air breaks down at $\sim 1 \text{ MV/m}$

Cyclotrons

- Utilise motion in magnetic field:
 p (GeV/c) = 0.3 q B R
- Apply AC to two halves
- Lawrence achieved MeV particles with 28cm diameter
- Magnet size scales with momentum...

14th April 2008

Linear Accelerators

For energies greater than few MeV:

- use multiple stages
- RF easier to generate and handle
- Bunches travel through resonant cavities
- Spacing and/or frequency changes with velocity
- Can achieve 10MV/m and higher
- 3km long Stanford Linac reached 45 GeV

e[—] Bunch Cloud

Synchrotrons

- p(GeV/c) = 0.3 q B R
- Cyclotron (see page 15) has constant *B*, increasing *R*
- Increase *B* keeping *R* constant:
 - variable current electromagnets
 - particles can travel in small diameter vacuum pipe
 - single cavity can accelerate particles each turn
 - efficient use of space and equipment
- Discrete components in ring
 - cavities
 - dipoles (bending)
 - quadrupoles etc. (focusing)
 - diagnostics
 - □ control

$$mv^{2} = Bqv$$
$$\omega = \frac{v}{r} = \frac{Bq}{m}$$
$$f = \frac{Bq}{2m\pi} \frac{m_{0}}{m_{0} + T}$$

Synchrotron Radiation

- Accelerated charges radiate
- Average power loss per particle:
- Quantum process \rightarrow spread in energy
- For a given energy ~ 1/mass⁴
 - (this comes from γ in the Power loss equation)
- Electron losses much larger than proton
 - □ High energy electron machines have very large or infinite *R* (*i.e. linear*).
- Pulsed, intense X-ray source may be useful for some things....

Real Synchrotrons

Grenoble, France

DIAMOND, RAL, UK

Fixed Target Experiments

Beam incident on stationary target

- Interaction products have large momentum in forward direction
- Large "wasted" energy \Leftrightarrow small \sqrt{s}
- Intense beams/large target ⇒ high rate
- Secondary beams can be made.

$$p_{1} = (E_{1}, \overline{p}_{1}) \quad p_{2} = (E_{2}, \overline{p}_{2}) \quad E^{2} = p^{2} + m_{0}^{2}$$

Centre of Mass energy squared $s = E_{cm}^{2} = (p_{1} + p_{2})^{2}$
$$\Rightarrow E_{cm} = \left[\left(E_{1} + E_{2} \right)^{2} - \left(\overline{p}_{1} + \overline{p}_{2} \right)^{2} \right]^{1/2}$$

Fixed Target - Neutrino Beams

Colliders

- Incoming momenta cancel
- $\sqrt{s} = 2E_{beam}$
- Same magnetic field deflects opposite charges in opposite directions ⇒ *Antiparticle accelerator for free!*
 - particle/antiparticle quantum numbers also cancel
- Technically challenging

Antiparticle Production

- Positrons and antiprotons produced in fixed target collisions
 typical efficiency 10⁵ protons per antiproton
- 2. Large phase space (different momenta) must be "cooled"
 a synchrotron radiation damps electrons
 - antiproton cooling techniques won Nobel Prize for van der Meer in the 1984.
- 3. Decelerated and accumulated in storage rings

Anti-Proton Production at CERN

Protons are accelerated in a linear accelerator, booster, and proton synchroton (PS) up to 27 GeV. These protons hit a heavy target (Beryllium). In the interaction of the protons and the target nuclei many particle-antiparticle pairs are created out of the energy, in some cases proton-antiproton pairs. Some of the antiprotons are caught in the antiproton cooler (AC) and stored in the antiproton accumulator (AA). From there they are transferred to the low energy antiproton ring (LEAR) where experiments take place.

Positron Production (PEPII at SLAC)

Positrons are produced by diverting some of the electrons from the accelerator and colliding them with a large piece of tungsten. This collision produces large numbers of electron-positron pairs. The positrons are collected and sent back along a separate line to the start of the linac.

Different Colliders

p anti-p

- energy frontier
- difficult to interpret
- limited by anti-p production
- □ SPS, Tevatron
- **p** *p*
 - high luminosity
 - energy frontier

 - $\mu + \mu$ -• some plans exist

- $e^+ e^-$
 - relatively easy analysis
 - high energies difficult
 - □ LEP, PEP, ILC...

• *e p*

- proton structure
- HERA
- *ion ion*
 - quark gluon plasma
 - RHIC, LHC
- *vv*
 - Muon Collider !!!

Complexes

- Synchrotrons can't accelerate particles from rest
- Designed for specific energy range, normally about factor of 10

Collider Parameters

	CESR (Cornell)	CESR-C (Cornell)	KEKB (KEK)	PEP-II (SLAC)	LEP (CERN)
Physics start date	1979	2002	1999	1999	1989
Physics end date	2002				2000
Maximum beam energy (GeV)	6	6	$e^- imes e^+: 8 imes 3.5$	$e^{-}: 7-12 (9.0 \text{ nominal})$ $e^{+}: 2.5-4 (3.1 ")$ (nominal $E_{\rm CM} = 10.5 \text{ GeV}$)	101 in 1999 (105=max. foreseen
Luminosity $(10^{30} \text{ cm}^{-2}s^{-1})$	1280 at 5.3 GeV/beam	35 at 1.9 GeV/beam	11305	6777	$24 \text{ at } Z^0$ 100 at > 90 GeV
Time between collisions (μs)	0.014 to 0.22	0.014 to 0.22	0.008	0.0042	22

Full details at pdg.lbl.gov

	HERA (DESY)	TEVATRON (Fermilab)	RHIC (Brookhaven)			LHC (CERN)	
Physics start date	1992	1987	2000			2007	2008
Physics end date							
Particles collided	ep	$p\overline{p}$	pp (pol.)	Au Au	d Au	pp	Pb Pb
Maximum beam energy (TeV)	e: 0.030 p: 0.92	0.980	$0.1 \\ 40\% \text{ pol}$	$0.1 { m ~TeV/u}$	0.1 TeV/u	7.0	$2.76 { m ~TeV/u}$
$\begin{array}{c} \text{Luminosity} \\ (10^{30} \ \text{cm}^{-2} \text{s}^{-1}) \end{array}$	75	50	6	0.0004	0.07	$1.0 imes10^4$	0.001
Time between collisions (μs)	0.096	0.396	0.213		0.025	0.100	
14th April 2008	Fergus Wilson, RAL				31		

Some notable accelerators

Туре	Name	Size	Start	Place	Energy
			Year		
Cockcroft-		3m	1932	Cambridge	0.7MeV
Walton					
Cyclotron	9"	9"	1931	Brookhaven	1.0 MeV
Cyclotron	184"	184"	1942	Brookhaven	100 MeV
Synchrotron	Cosmotron	72m	1953	Brookhaven	3.3 GeV
Synchrotron	AGS	72m	1960	Brookhaven	33 GeV
Collider	LEP	27km	1995	CERN	104 GeV
Collider	LHC	27km	2007?	CERN	7 TeV

Summary of Lecture I

- Admin
- Particle Sources
 - Natural Radiation
 - Cosmic Rays
 - Reactors
 - Accelerators
- Accelerators
 - Cockcroft Walton
 - Van der Graaf
 - Cyclotron
 - Synchrotron
 - Linear Accelerator

- Antiparticle Production
- Collider Parameters

Charged particle interactions and detectors