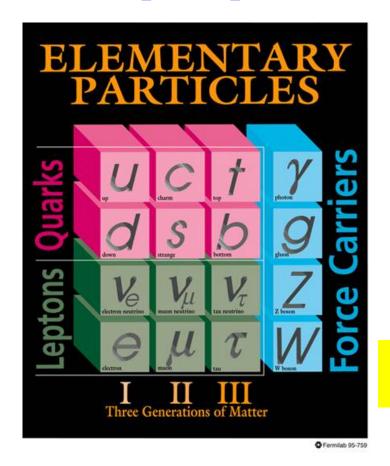


29th April 2008

Fergus Wilson, RAL

Data Analysis


Extract physics from data

- Measure a quantity
- □ Search for new particles

- 1. Basic concepts
- 2. Monte Carlo methods
- 3. Signal
- 4. Backgrounds
- 5. Errors
- 6. Statistics

What do we measure?

In principle:

But in reality:

LIGHT UNFLAVORED MESONS (S = C = B = 0)

Quark content

For I=1 (π, b, ρ, a) : $u\overline{d}$, $(u\overline{u}-d\overline{d})/\sqrt{2}$, $d\overline{u}$; for I=0 $(\eta, \eta', h, h', \omega, \phi, f, f')$: $c_1(u\overline{u}+d\overline{d})+c_2(s\overline{s})$

 π^{\pm}

 $I^{G}(J^{P}) = 1^{-}(0^{-})$

Spin

Mass

1710

Mass $m=139.57018\pm0.00035$ MeV (S = 1.2) Mean life $\tau=(2.6033\pm0.0005)\times10^{-8}$ s (S = 1.2) $c\tau=7.8045$ m

Lifetime

 $\pi^{\pm}
ightarrow \, \ell^{\pm}
u \gamma$ form factors $^{[a]}$

 $F_V = 0.017 \pm 0.008$ $F_A = 0.0115 \pm 0.0005$ (S = 1.2) $R = 0.059^{+0.009}_{-0.008}$

Form factor

 π^- modes are charge conjugates of the modes below.

For decay limits to particles which are not established, see the appropriate Search sections (Massive Neutrino Peak Search Test, A^0 (axion), and Other Light Boson (X^0) Searches, etc.).

Decay Modes

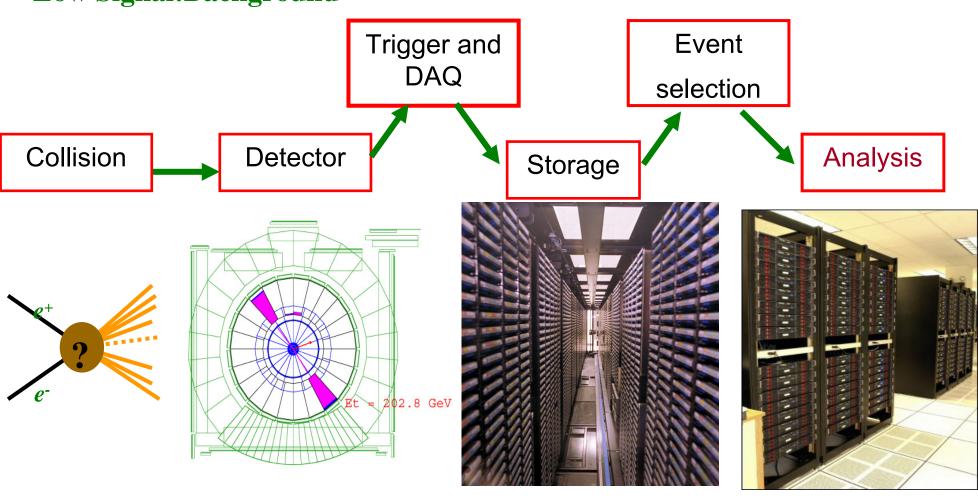
Branching Fraction

π^+ DECAY MODES	Fraction (Γ_i/Γ)		· _i /Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\mu^+ u_{\mu}$	[<i>b</i>]	[b] (99.98770±0.00004) %			30
$\mu^+ u_\mu\gamma$	[c]	(2.00	±0.25	$) \times 10^{-4}$	30
$e^+ \nu_e$	[b]	(1.230	±0.004	$) \times 10^{-4}$	70
$e^+ \nu_e \gamma$	[c]	(1.61	± 0.23	$) \times 10^{-7}$	70
$e^{+}\nu_{e}\pi^{0}$		(1.036	± 0.006	$) \times 10^{-8}$	4
$e^+ \nu_e e^+ e^-$		(3.2	± 0.5	$) \times 10^{-9}$	70
$e^+ \nu_e \nu \overline{\nu}$		< 5		$\times 10^{-6} 90\%$	70
	// 🗅				

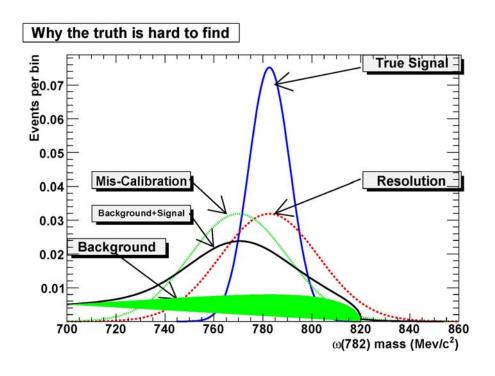
Lepton Family number (LF) or Lepton number (L) violating modes

$\mu^+ \overline{ u}_e$	L	[d] < 1.5	$\times 10^{-3} 90\%$	30
$\mu^+ u_e$	LF	[d] < 8.0	$\times 10^{-3} 90\%$	30
$\mu^-e^+e^+ u$	LF	< 1.6	$\times 10^{-6} 90\%$	30

Particle Properties


Properties

- Mass
 - Measure momentum and energy: E² = p² + m²
- Mass width → Lifetime
 - Measure momentum and energy or:
 - How many particles exist after t seconds
- Branching Fraction
 - Reconstruct the decays and see how many there are.
- Charge
 - Direction in a magnetic field
- Spin
 - Angular distribution of decays
- Structure e.g. Proton/Neutron/Nucleus
 - Scatter particles of the proton and look at distribution


Data Flow

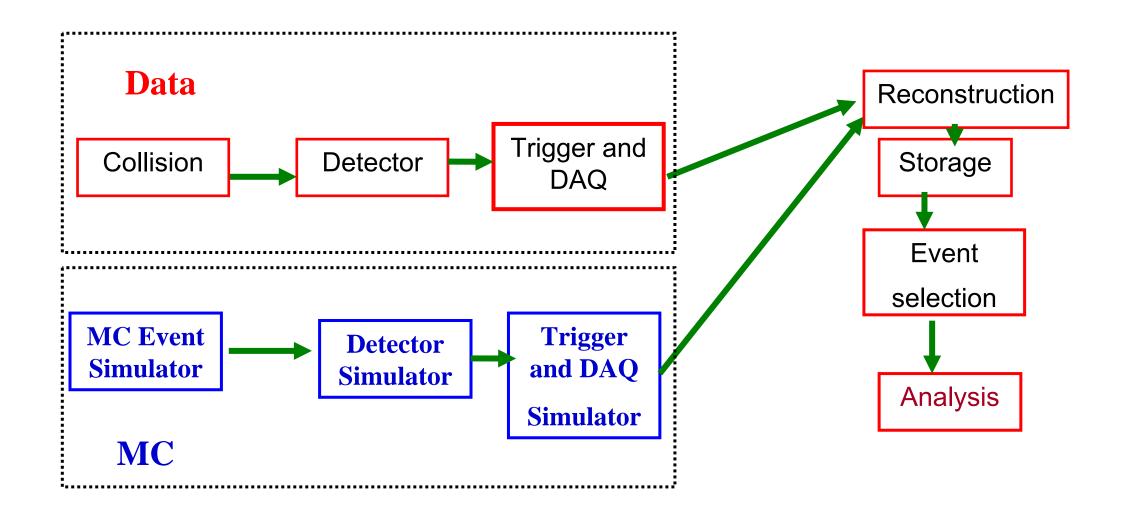
High Signal:Background

Low Signal:Background

Elements of Analysis

Not only *Data* but...

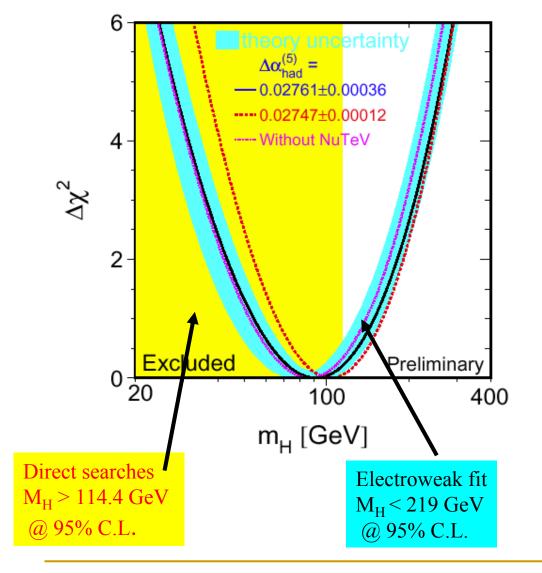
- Detector response to signal
- Background estimates
- Errors
- statistical
- systematic
- How to solve?
 - Try and evaluate from data
 - Sometimes need more...
 - Monte Carlo


Monte Carlo

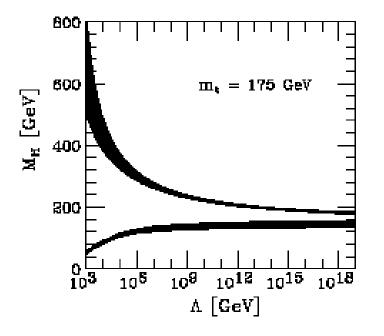
- Generate artificial data
- 2. Simulate detector response
- Analyse simulated data as if it were real
 - Response to known input can be calculated
 - Also used in detector design

- Computer intensive
- Must be carefully tuned and checked

Data and Monte Carlo

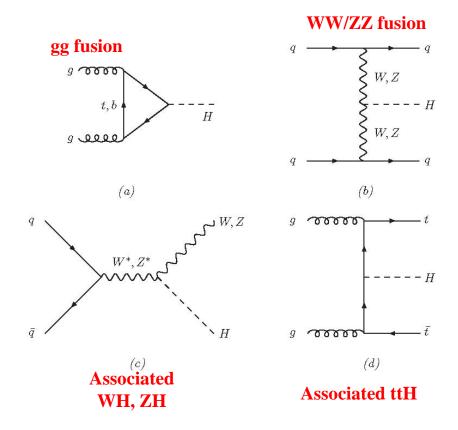


Search for the Higgs Boson


- Missing piece of Standard Model
- Standard Model Higgs theory well understood:
 - Mass is only free parameter
 - Clear predictions to test
- Most "New Physics" models have something equivalent to a Higgs boson ("MSSM Higgs", "little Higgs", etc...).
- Could be more than one type of Higgs boson
- Current limit M_H>115 GeV
 (LEP)

- Particle masses are generated by interactions with the scalar (Higgs) field.
- Couplings are fixed by the masses.
- Once M_H is known everything is predicted.
- So by measuring the coupling of the Higgs to particles of known mass we can test theory.

Search for the Higgs Boson


$$M_H^2 \le \frac{8\pi^2 v^2}{3\log \frac{\Lambda_{QCD}^2}{v^2}}$$
 $v^2 = 246 \text{ GeV}$

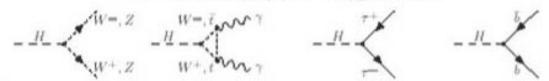
If no new physics up to Planck scale ($\sim 10^{19} \text{GeV}$ quantum gravity significant) small mass range for Higgs: $130 < M_H < 190 \text{ GeV}$

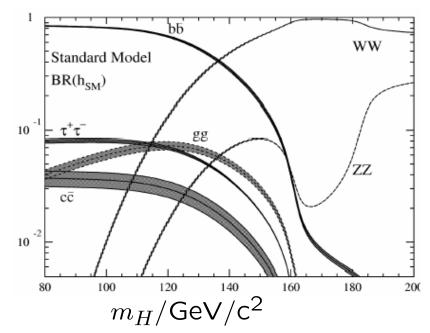
Higgs Production


How is the Higgs produced?

Gluon fusion most promising

First: understand signal


How often is it produced?



Process	Events/s	Events/year	
$W o e \nu$	40	$4 \cdot 10^{8}$	
Z o ee	4	$4 \cdot 10^{7}$	
$t\overline{t}$	1.6	$1.6 \cdot 10^{7}$	
$b\overline{b}$	10^{6}	10^{13}	
$\tilde{g}\tilde{g}$ (m = 1 TeV)	0.002	$2 \cdot 10^4$	
Higgs (m= 120 GeV)	0.08	$8 \cdot 10^{5}$	
Higgs (m= 120 GeV)	0.08	$8 \cdot 10^{5}$	
Higgs (m= 800 GeV)	0.001	10^{4}	
QCD jets $p_{\rm T} > 200 {\rm GeV}$	10^{2}	10 ⁹	

Higgs Decay

Detectable decays of a Higgs-Boson

Branching Fraction: If produce 10⁸ Higgs and measure only 20 decays H→gg with an efficiency of 0.00025% then Branching Fraction:

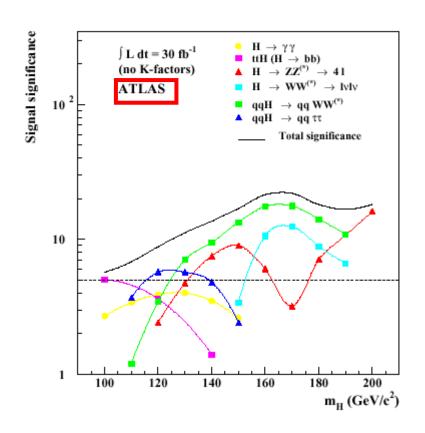
Depends on Higgs Mass

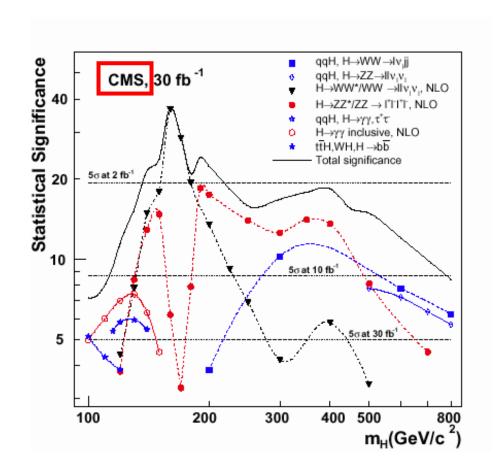
■
$$gg \rightarrow H \rightarrow \gamma \gamma$$

$$\blacksquare$$
 $H \rightarrow ZZ^* \rightarrow 41$

■
$$gg \rightarrow HW,Htt: H\rightarrow bb$$

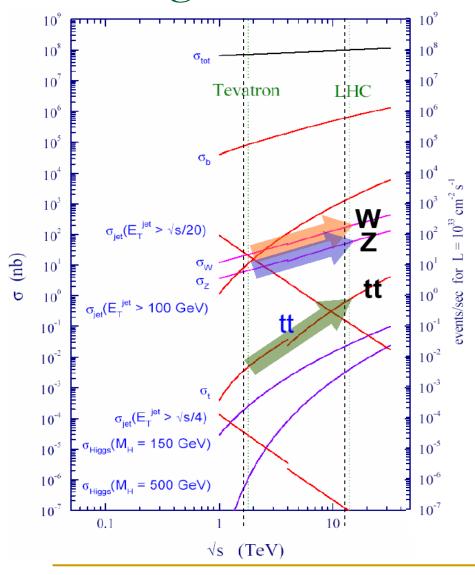
$$\blacksquare$$
 H \rightarrow WW* \rightarrow 21 2 ν


$$qq \rightarrow qqH : H \rightarrow \gamma\gamma, WW^*, \tau^+\tau^-$$


$$H \rightarrow 777 \rightarrow 41$$

■
$$H \rightarrow ZZ,WW \rightarrow jets$$

$$BF(Higgs \to gg) = \frac{N_{decays}}{N_H * \eta} = \frac{20}{10^8 * 2.5 \times 10^{-6}} = 0.08$$


Best Modes to look at

Compare to list on previous slide

Backgrounds - Tevatron to the LHC

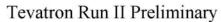
Huge stats for Standard Model signals. Rates @ 10³³cm⁻² s⁻¹

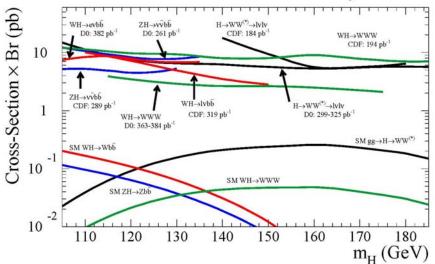
 $\sim 10^9 \text{ events/} 10 \text{ fb}^{-1} \text{ W}$ (200 Hz)

 $\sim 10^8 \text{ events/} 10 \text{ fb}^{-1} \text{ Z}$ (50 Hz)

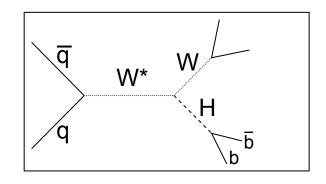
 $\sim 10^7$ events/10 fb⁻¹ tt (1 Hz)

(10 fb⁻¹ = 1 year of LHC running at low luminosity 10^{33} cm⁻² s⁻¹, hence by ~end 2009)


Background is anything with signature similar to signal


- $\bullet W+X$ (X can be W, Z or just 2 QCD jets)
- \bullet ZZ $\rightarrow qql+l$ (one lepton not identified)
- **T**⁺ **T**⁻
- b-tags can be real, charm or fakes

Current Results - Tevatron


- At 120 GeV $H \rightarrow bb$ dominates
- Signature $gg \rightarrow H \rightarrow bb$:
 - 2 jets
 - One or two b-tags
- Swamped by dijet production
 - □ bb ~ µb
 - qq ~ mb (fake b-tag rate small but not zero)
- Have to use W/Z+H channel (Associated Production)

Tevatron/CDF - Associated Production

$qq \rightarrow WH$ with $H \rightarrow bb$

- final state qqbb
- Four jet backgrounds still too large

$$W \rightarrow e v_e \quad 10\% \qquad W \rightarrow \mu v_u$$

$$W \rightarrow \mu v_{\mu}$$
 10%

- Final state *lvbb*
 - One electron or muon
 - Missing transverse momentum
 - Two jets
 - One or two *b*-tags
- Easy to select in trigger and offline $\sigma \times Br \approx 0.02 \text{ pb}$

Efficiency at the Tevatron/CDF

- Nature provides 20 fb of WH→Ivbb events a handful per year
- How many pass CDF trigger and analysis selection?
 - □ Cleanly identified electron or muon in acceptance
 - Two jets
 - At least one b-tag
 - Large missing momentum
 - None overlapping
 - Run thousands of MC events
 - Efficiency
 - Observe 2 per fb⁻¹ per year

$$\epsilon = \frac{N_{selected}}{N_{generated}} \approx 10\%$$

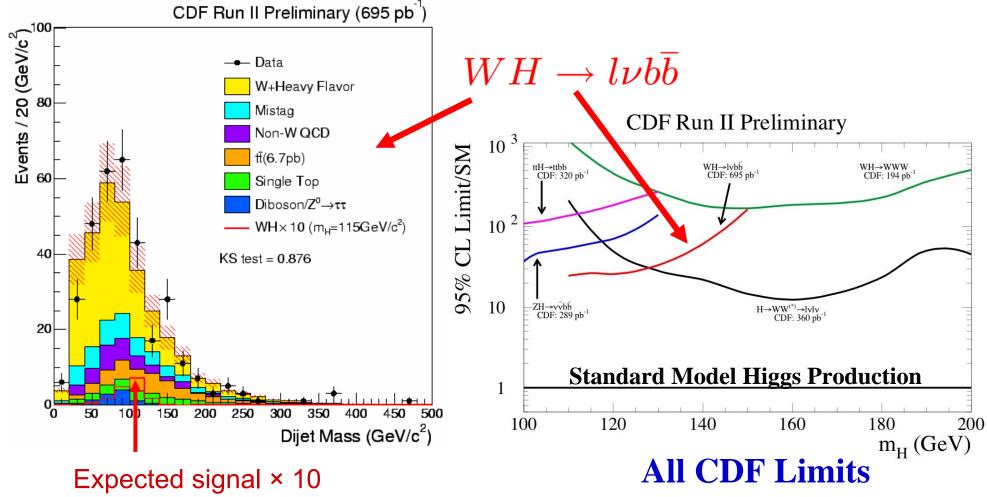
How do we report this result?

Statistical

- Mostly counting events (data or MC)
- Poisson distribution: $\sigma = \sqrt{\mu} \approx \sqrt{N}$
 - NB fractional error ~ 1/√N
- Efficiency follows binomial distribution:

$$\sigma_{\epsilon} = \sqrt{\epsilon (1 - \epsilon)/N}$$

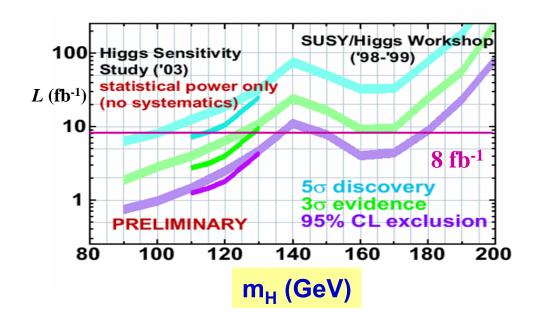
Systematic

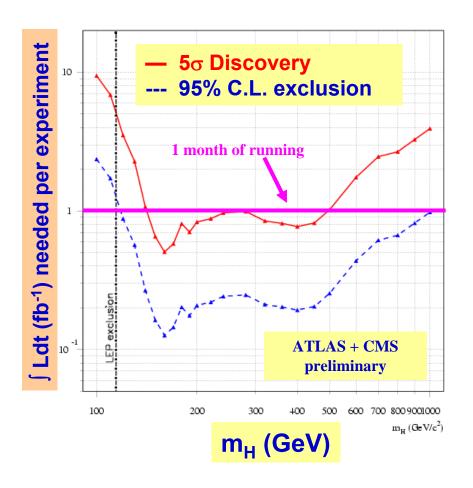

- Anything not <u>completely</u> understood may affect result
 - Detector performance, background rates, Monte Carlo modeling...
- Estimate range of parameter
- Vary in Monte Carlo

Significance

- In a given amount of data we expect:
 - N_B background events
 - □ Statistical error on background $\approx \sqrt{N_B}$
 - \square Systematic error on background = σ_{svs}
 - $lue{}$ Add errors in quadrature to get σ_{TOT}
- Observe $N(>N_B)$ events in data. Could be:
 - □ random fluctuation in $N_B \pm \sigma_{TOT}$ background events
 - $Arr N_B$ background events & N_S signal events
- Significance $S = N_S / \sigma_{TOT}$
 - S = 3: probability of fluctuation $\sim 10^{-3}$ interesting...
 - S = 5: probability of fluctuation $\sim 10^{-5}$ discovery!!

Latest CDF Higgs Results


Data and background as function of bb mass



Predicted Sensitivity – Tevatron v LHC

Tevatron

- **LHC**
- CDF expects a maximum of 8 fb⁻¹ by 2009
 - 15-20 signal events
 - 2000 background
 - 8 years of running

