xperimental Particle PhysicsPHX86 Performing an analysis Lecture 5

7th May 2009

Fergus Wilson, RAL

Data Analysis

Extract physics from data

- Measure a quantity
- Search for new particles

- 1. Basic concepts
- 2. Monte Carlo methods
- 3. Signal
- 4. Backgrounds
- 5. Errors
- 6. Statistics

Particle Properties

- Properties
 - Mass
 - Measure momentum and energy: E² = p² + m²
 - $\ \ \, \hbox{Mass width} \rightarrow \text{Lifetime}$
 - Measure momentum and energy or:
 - How many particles exist after t seconds
 - Branching Fraction
 - Reconstruct the decays and see how many there are.
 - Charge
 - Direction in a magnetic field
 - Spin
 - Angular distribution of decays
 - Structure e.g. Proton/Neutron/Nucleus
 - Scatter particles of the proton and look at distribution

Data Flow

High Signal:Background

Low Signal:Background

Elements of Analysis

Not only *Data* but...

- Detector response to signal
- Background estimates
- Errors
- statistical
- systematic
- How to solve?
 - Try and evaluate from data
 - Sometimes need more...
 - Monte Carlo

Monte Carlo

- 1. Generate artificial data
- 2. Simulate detector response
- 3. Analyse simulated data as if it were real
 - Response to known input can be calculated
 - □ Also used in detector design

- Computer intensive
- Must be carefully tuned and checked

Data and Monte Carlo

Search for the Higgs Boson

- Missing piece of Standard Model
- Standard Model Higgs theory well understood:
 - Mass is only free parameter
 - Clear predictions to test
- Most "New Physics" models have something equivalent to a Higgs boson ("MSSM Higgs", "little Higgs", etc...).
- Could be more than one type of Higgs boson
- Current limit M_H>115 GeV (LEP)

- Particle masses are generated by interactions with the scalar (Higgs) field.
- Couplings are fixed by the masses.
- Once M_H is known everything is predicted.
- So by measuring the coupling of the Higgs to particles of known mass we can test theory.

Search for the Higgs Boson Search for the Higgs Particle

90% confidence level Status as of March 2009 **95% confidence level Direct searches** Excluded by Excluded by Excluded by $M_{\rm H} > 114.4 \,\,{\rm GeV}$ **LEP** Experiments Tevatron Indirect Measurements 95% confidence level @ 95% C.L. **Experiments** 95% confidence level 100 114 120 140 160 170 180 185 800 Higgs mass values If no new physics up to Planck scale ($\sim 10^{19}$ GeV $m_t = 175$ GeV 600 M_H [GeV] quantum gravity significant) small mass range for Higgs: $130 < M_{H} < 190 \text{ GeV}$ 400 $M_{H}^{2} \le \frac{8\pi^{2}v^{2}}{3\log\frac{\Lambda_{QCD}^{2}}{v^{2}}}$ $v^{2} = 246 \,\text{GeV}$ 200 103 10⁵ 10⁹ 1012 1015 1018 $\Lambda [GeV]$

Higgs Production

First: understand signal

How is the Higgs produced?

$$m^{-2}s^{-1}$$
 11

- Which decay to look at?
- Depends on Higgs Mass
 - □ M_H <150 GeV
 - $gg \rightarrow H \rightarrow \gamma \gamma$
 - $\blacksquare \quad \mathsf{H} \to \mathsf{Z} \mathsf{Z}^* \to 41$
 - $gg \rightarrow HW,Htt: H \rightarrow bb$
 - $H \rightarrow WW^* \rightarrow 21 2v$
 - □ M_H <500 GeV
 - $\bullet \quad \mathsf{H} \rightarrow \mathsf{ZZ} \rightarrow 41$
 - □ M_H >500 GeV

•
$$H \rightarrow ZZ, WW \rightarrow jets$$

$$BF(Higgs \to gg) = \frac{N_{decays}}{N_H * \eta} = \frac{20}{10^8 * 2.5 \times 10^{-6}} = 0.08$$

7th May 2009

Fergus Wilson, RAL

Best Modes to look at

Compare to list on previous slide

Backgrounds - Tevatron to the LHC

Huge stats for Standard Model signals. Rates @ 10^{33} cm⁻² s⁻¹ ~10⁹ events/10 fb⁻¹ W (200 Hz) ~10⁸ events/10 fb⁻¹ Z (50 Hz) ~10⁷ events/10 fb⁻¹ tt (1 Hz)

(10 fb⁻¹ = 1 year of LHC running at low luminosity 10^{33} cm⁻² s⁻¹, hence by ~end 2010)

Background is anything with signature similar to signal

• W+X (X can be W, Z or just 2 QCD jets)

• $ZZ \rightarrow qql+l$ - (one lepton not identified)

• **T**⁺ **T**⁻

•*b*-tags can be real, charm or fakes

7th May 2009

Current Results - Tevatron

- At 120 GeV $H \rightarrow b\overline{b}$ dominates
- Signature $gg \rightarrow H \rightarrow b\overline{b}$:
 - 2 jets
 - One or two b-tags
- Swamped by dijet production
 - □ *bb* ~ µb
 - qq ~ mb (fake b-tag rate small but not zero)
- Have to use W/Z+H channel (Associated Production)

Tevatron/CDF - Associated Production

 $q\overline{q} \rightarrow WH$ with $H \rightarrow b\overline{b}$

 $W \rightarrow q \overline{q} 70\%$ final state qqbb Four jet backgrounds still too large $W \rightarrow ev_e$ 10% $W \rightarrow \mu v_\mu$ 10% Final state *lvbb* One electron or muon Missing transverse momentum Two jets One or two *b*-tags Easy to select in trigger and offline $\sigma \times Br \approx 0.02 \text{ pb}$

Efficiency at the Tevatron/CDF

- Nature provides 20 fb of WH→Ivbb events a handful per year
- How many pass CDF trigger and analysis selection?
 - □ Cleanly identified electron or muon in acceptance
 - Two jets
 - At least one b-tag
 - □ Large missing momentum
 - None overlapping
 - Run thousands of MC events
 - Efficiency
 - Observe 2 per fb⁻¹ per year

$$\epsilon = rac{N_{selected}}{N_{generated}} pprox 10\%$$

How do we report this result?

Statistical

- Mostly counting events (data or MC)
- Poisson distribution: $\sigma = \sqrt{\mu} \approx \sqrt{N}$
 - □ NB fractional error ~ $1/\sqrt{N}$
- Efficiency follows binomial distribution:

$$\sigma_{\epsilon} = \sqrt{\epsilon(1-\epsilon)/N}$$

Systematic

- Anything not <u>completely</u> understood may affect result
 - Detector performance, background rates, Monte Carlo modeling...
- Estimate range of parameter
- Vary in Monte Carlo

Significance

- In a given amount of data we expect:
 - N_B background events
 - □ Statistical error on background $\approx \sqrt{N_B}$
 - Systematic error on background = σ_{sys}
 - Add errors in quadrature to get σ_{TOT}
- Observe $N(>N_B)$ events in data. Could be:
 - random fluctuation in $N_B \pm \sigma_{TOT}$ background events
 - N_B background events & N_S signal events
- Significance $S = N_S / \sigma_{TOT}$
 - S = 3: probability of fluctuation $\sim 10^{-3}$ interesting...
 - S = 5: probability of fluctuation $\sim 10^{-5}$ discovery!!

Latest CDF/D0 Higgs Results (March 2009)

Look for H→WW (dominant above 135 GeV) and W→ Iv (W→bb not used as too much background).

 $\mathbf{W}_{_{Jets}}$

M

Jets

tau

mu e tau mu e

Predicted Sensitivity – Tevatron v LHC

Tevatron

 CDF expects a maximum of 6.5 fb⁻¹ by 2009

Ruptured bus-bar interconnection

Fergus Wilson, RAL LHC status and commissioning

22

Damage: magnet displacements

7th May 2009 07/05/2009

23