SYMMETRIES & CONSERVATIONS LAWS

Homework

If you have problems, do not hesitate to contact me:

Stephen Haywood (RAL)
S.Haywood@rl.ac.uk
Tel 01235 446761
Lecture 1

Q 1.1) By considering the first few terms of the expansions, prove that
\[\exp(A) \exp(B) \neq \exp(A + B) \]
if \(A\) and \(B\) do not commute.
However, show that the equality holds if \(A\) and \(B\) do commute (prove in general, to all orders).

Q 1.2) By expanding the exponential, find an expression for \(\exp(i\alpha A)\) where
\[
A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}
\]

Q 1.3) If \([A,B]=B\), find an expression for \(\exp(i\alpha A)B \exp(-i\alpha A)\) (consider to all orders).
Q 2.1) Consider which of the following are groups:

- Integers under Addition
- Integers under Subtraction
- Integers under Multiplication
- Reals under Multiplication

Any violations of the requirements for a group mean that the set and operation do **not** form a group.

Q 2.2) Demonstrate that there is only one group combination table for 3 distinct objects, i.e. all groups for 3 objects have the same form (are isomorphic) to Z_3. Do this by considering all the combinations for 3 distinct objects {e, a, b}.

Q 2.3) Show that the set of Lorentz Transformations:

$$g(\beta) = \begin{cases}
 x' = \gamma(x - \beta t) \\
 t' = \gamma(t - \beta x) \\
 \gamma = 1/\sqrt{1-\beta^2}
\end{cases}$$

form an Abelian Lie group under the operation “follows”.

Hint: start by combining two boosts: $g(\beta_2)\ g(\beta_1)$ and showing that these correspond to a third boost. Do this in Euclidean space. Easiest to employ matrix notation.

Q 2.4) Show that U(n) and SU(n) are groups.
Q 3.1) Consider rotations in 3D about the x-, y- and z-axes – SO(3).
Identify generators appropriate to
 a) Scalar wavefunctions $\psi(x)$ – we have done this in the Lectures; you can just write down the QM operators (do not write lots of blah, just write down operators)
 b) Real vectors in 3D space – consider infinitesimal rotation matrices; the generators will be 3×3 matrices (give the rotation matrices, consider small angles and identify generators)
In both cases, find the structure constants. (Don’t work out every single possibility, but appeal to symmetry.)

Q 3.2) For the generators $\{L_x,L_y,L_z\}$ in question 3.1, part (b), find the simultaneous eigenvectors of L^2 and L_z (i.e. the one set of vectors which are eigenvectors of both operators).

Q 3.3) Find the adjoint matrices for the generators in question 3.1, part (b).
In this case, it is obvious that they satisfy the Lie algebra.

Q 3.4) Verify the form of $R_y(\theta)$ for spin-1 given in Lecture 3.
Lecture 4

Q 4.1) Using the Young Tableaux rules, write down the multiplicity for \(p \) particles of SU(n) in a totally symmetric state, namely a row of \(p \) boxes:

\[
\begin{array}{ccccccc}
& & & & & & \\
& & & & & & \\
& & & & & & \\
\end{array}
\]

Now consider examples of how the corresponding states could be labelled by supplying quantum numbers \{1,2,...,n\}.

\[
\begin{array}{ccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 2 & \\
1 & 1 & 1 & 1 & 1 & 2 & 2 \\
\end{array}
\]

Etc

By considering all the possible configurations, verify the multiplicity. Do this in general, not for a specific example.

Hint: This is so trivial, that it requires no algebra, but you have to spot the trick!

The trick is to consider the number of ways of listing \(p \) boxes with \((n-1)\) transitions of state label.

Q 4.2) Using the Young Tableaux rules, verify that the multiplicity of a general multiplet in SU(2) is \((a+1)\) and in SU(3) is \(\frac{1}{2} (a+1)(b+1)(a+b+2)\).
Q 5.1) Considering only flavour, find the ratio of matrix elements for $\pi^0 \rightarrow \gamma\gamma$ and $\eta \rightarrow \gamma\gamma$. Do this for a general case of mixing angle θ_p, and then choose θ_p such that the η has no strange-quark content. Is the $-\ve$ sign in the π^0 wavefunction meaningful?

How to proceed:
Label the scattering operator S and the meson state $|M\rangle$.
What you need is $\langle \gamma\gamma | S | M \rangle = \sum_q \langle \gamma\gamma | S | q\bar{q} \rangle \langle q\bar{q} | M \rangle$

\[
\begin{align*}
\bar{q} & \quad iQ_q & \quad \gamma \\
q & \quad iQ_q & \quad \gamma
\end{align*}
\]

$\langle \gamma\gamma | S | q\bar{q} \rangle \sim Q_q^2$

And

$|\eta\rangle = \cos \theta_p |\eta_8\rangle + \sin \theta_p |\eta_1\rangle$

$|\pi^0\rangle = \frac{1}{\sqrt{2}} (u\bar{u} - d\bar{d})$ etc.