LECTURE 1 - SYMMETRIES & CONSERVATION
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Symmetry & Transformations

Systems contain Symmetry if they are unchanged by a Transformation.

This symmetry is often due to an absence of an absolute reference and corresponds to the concept
of indistinguishability.

It will turn out that symmetries are often associated with conserved quantities.

Active @
S

Passive

Transformations may be:

Active:
¢ Move object
e More physical

Passive:
e Change “description”
Eg. Change Coordinate Frame
e More mathematical

@ @
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We will consider two classes of Transformation:

Space-time:
e Translations in (x,t) } Poincaré Transformations
e Rotations and Lorentz Boosts }

e Parity in (x,t) (Reflections)

Internal: associated with quantum numbers

Translations:
X—=>X'=X-A,
t->t'=t-A,

Rotations (e.g. about z-axis):
X — X'=Xxc0s0, +ysinf, & y » y'=-xsin6, + ycoso,

Lorentz (e.g. along x-axis):
X = X'=9x-pt) &t —t'=y(t-Ppx)

Parity:
X = X'=-X
t—>t'=-t

For physical laws to be useful, they should exhibit a certain generality, especially under symmetry
transformations.

In particular, we should expect invariance of the laws to change of the status of the observer — all
observers should have the same laws, even if the evaluation of measurables is different. Put
differently, the laws of physics applied by different observers should lead to the same observations.

It is this principle which led to the formulation of Special Relativity.
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lllustration from Non-Relativistic Mechanics

Observer 1

i

For Observer 1:

m Mass m at position x, attached to Spring.
Spring fixed to Wall at x = W.
Natural length of Spring is L, and spring constant k.

Boundary conditions: x = W+L+A & x=0 att=0.

v

X
x=W Observers 1 & 2 are in inertial frames.
Observer 3 is in an accelerating frame wrt 1 & 2.
............. , 30
Observer 2
........ _— D
Observer 3
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One must be careful to understand the validity of given equation under a transformation.
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Transformations in Quantum Mechanics

Consider a scalar wavefunction: y(x)

Make a transformation from one coordinate system to another: x — x

Define the transformed wavefunction in the new frame by: y'(x') = y(x)

The intention is that x and x' correspond to the same point in space-time and the wavefunctions v’

and y describe the same event.

x=0 x=1 X=2 x=3

’
» X

X/
x'=10 x'=110 x'=210 x'=310

At the point where the event happens, the wavefunction has some (relatively) well-defined value.
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Note y' will be a different function from w:

If x'=f(x), and the inverse transformation is f~', then x =17(x"). Hence
v (x')=w(x) =y(f(x) so ' ()=wy(f()

For example, if y(x) =x and x'=exp(x), then y'(x') = y(x) = x =log(x").

In general, assume that the new wavefunction can be derived from the old one by a transformation of
the wavefunction itself: y'=Uy where U is an operator

In general, y can be expressed as a linear superposition of base states {¢;}: y=> c.0.

In the new description, v > y', 6 > ¢', so0 y'=> c' ¢'.
But since y and y' correspond to the same states, as do ¢ and ¢', then we would expect ¢' =c,

— \‘lj‘z Z Ciq)'i = U(Z Ciq)i) = Z CIU(¢|)

This is the definition of a linear operator.

Note there are two distinct transformations:
a. the transformation describing the change in “description” (coordinate frame): x — x'=f(x)

b. the associated transformation of the wavefunction: v — y'= Uy
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Furthermore, the overlap between any states v, and v, is an observable and should be independent
of the description.

Using the bra-ket notation for compactness: y, <> |a >, then
V. =Uy, &la>=Ula>and vy, =y, "U" & <a'l=<a|U"
where " denotes the Hermitian conjugate (often shown by a dagger).

The overlapis <b'|a'>=<b|U"U|a > and if this is equal to <b|a > for all y, and v, then U"U =1.
The transformation of the wavefunctions is Unitary. (But see later.)

How do operators transform ?

Consider the observable <b|A|a>=[ y,"Ay,.

Want<b'| A'|a'>=<b | A |a > for all y, and ys.
=<b|U"'A'U|a>=<Db|A|a>=U"A'U=A = A'=UAU"

If A is invariant, then
A=A=UAU"=A=UA=AU=[AU]=0
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Generators

Under a transformation, y — y'=Uy.
Assume that the unitary operator can be expressed as: U = exp(iaX), where aeR.

What is X ? Naively it is the “log” of U, but this is non-trivial, since we are dealing with operators and
functions need to be defined by their power series.

X is defined as the Generator of the transformation.
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Exponentiation of Operators

Define:
exp(A)=1+A+3A* + JA° +.. =37 L A" where A° =|

Then
exp(A)" = (3o, S AP)" =37, H(A™)® = exp(A™)

If U=exp(iaX), then it is easy to show U™ = exp(—iaX) — it follows from the normal rules for multiplying

exponentials of scalars, which in turn can be proved by expanding the exponentials. The result follows
easily because all the terms commute.

If the U is unitary, then U™ =U", hence
exp(—iaX) = (exp(iaX))" = exp((iaX)") = exp(-iaX")

Equating terms order by order in a implies X" = X, i.e. X is Hermitian.

These results can be derived by
e | ooking at the series expansions of exponentials and considering Binomial expressions
e Considering infinitisimal terms: exp(e) = 1+ ¢ for small €

e Building finite transformations from a product of infinitisimal ones: exp(A) = ;& (1+ 2)"

So the generator of a Unitary transformation is a Hermitian operator.
In QM, Hermitian operators are postulated to correspond to observables.
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Generator for Translations

Consider a translation in 1D in the x-direction X - x'=x—-A, = X =X+A,
So (X)) = w(x) = W(X+A,)

By Taylor expansion (and changing the dummy variable x’ back to x for neatness):

2 3
> 0 WA 0

d
Y +...=exp(A, —)v

\ 0
V' (X)=Y(X+A)=y(X)+A —y+3A, ;
ox ox

o0X ox’®

So we identify U =-exp(A, ai)
X

Since in QM, p, = —ihi
oX

= U=-exp(iAp, /7n) ... we often choose units so that # =1, and so it can be dropped.

So we see that the generator of a translation is the momentum operator.

This can be generalised to 3D: x — x'=x—-A = x = X'+A — where the quantities are 3-vectors.

Then
V' (X) =y(X+A)=y(X)+A-Vy+4(A-V)'y+5(A- V) y+..=exp(A-V)y
where V is the grad vector derivative.

Since inQM, p=-iAV = U=exp(iA-p/h)
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Generator for Rotations

Consider a rotation about the z-axis x — x'=xco0s6, +ysinf, & y - y'=-xsin6, + ycos®o,
It proves to be much easier to consider infinitisimal rotations: x > x'=x+y0, & y > y'=—x0,+y

So vy'(x,y')=vy(xy)=wy(x-y'6,y+x'6,) and by Taylor expansion to first order:
\ d d d d
V(Xy)=w(x=y0,,y +x6,) =y(X,y) - y0, —y+x0, —y=exp(6,(Xx_——-y )y

oX oy ay =~ oX
.0 d
InQM, L, =(xxp), =(xp, —yp,) =—iA(Xx——-y—)
ady ~ oXx

So we see that the generator of a rotation is the angular momentum operator.

. 2T Mot e e} W O
o8 " p - e

Note: one should be careful about generalising this to 3D, since a rotation cannot be buillt up trivially df
three rotations about the three axes. The combination of three such rotations depends on the order.
This will be manifested in QM if three operators are combined:

exp(ie,L, /n)exp(i6 L, /n)exp(i6,L, / 7) = exp(i(6,L, +6.L, +6,L,)/ %)
The reason is that exp(A)exp(B) = exp(A +B) only if A and B commute — which us not the case for

the angular momentum operators.
By contrast, the above is true for the momentum operators when generating 3D translations.

Finally, extending what was done for spatial translations, we find the generator of a time translation

is the Hamiltonian operator — i%z —H/#n
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Symmetry in Quantum Mechanics

Equation of motion:

in a%\p =Hy where vy =vy(xt)and H=H(x)

Under a transformation:
v —»>vy'=Uy and H-—H=UHU"
So in the new description:

.
h |: Hl ]
ih=w'=Hy

By definition, the system is said to have a Symmetry if H=H
Note: this is a symmetry of the Hamiltonian, not of the vector space (Hilbert Space) of solutions {wy}.

Of course, the symmetry contained within H will be reflected in the individual solutions.
H defines the dynamics of the system, i.e. the interactions, the y’s provide the way of describing the

position of the particles.
Eg. For classical description of gravitational forces around a star, the force/potential will exhibit

spherical symmetry; however the orbit of a planet will not: not necessarily circular orbit and certainly
confined to a plane.

Symmetry: H=H = UHU"=H=UH=HU=[HU]=0
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Symmetries & Conservation Laws

If a Unitary Transformation U is generated by X: U = exp(iaX)
Then if H has a symmetry associated with the transformation U:
[HU] =0 = [Hexp(iaX)] =0 = [H,X % (iaX)’] =0
For this to be true for all orders of a: = [H,X]=0.
Now consider the time variation of observables formed from X: <b|X]|a >
sla>=-iH|a> and 2<b|=2{b>}"=+i<b]|H
d<p|X|a>=<b|2X|a>-i<b|XH|a>+i<b|HX|a>=<b|2X|a>+i<b]|[HX]|a>
So if X has no explicit time-dependence and [H, X] =0, then <b| X |a > is constant in time.

Summary: If the Hamiltonian of a system is invariant under a Unitary transformation U generated
by an (Hermitian) operator X, then there will conserved observables associated with X.
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Symmetry Conserved Observable

Translation in Space-time (x,t) Momentum-energy (p,E)

Rotation in Space Orbital Angular-momentum L=xxp
Reflections in Space Parity

Gauge Transformation Charge

Note: there are symmetries associated with
e Reflections in time — Time reversal
e “Rotations” in Space-time — Lorentz boosts

which do not correspond to unitary transformations and hence do not have conserved observables.

Hang on. Didn’t we show earlier that transformations, U, had to be unitary ?
Actually it is the modulus of the amplitude squared which is physical and should be unchanged.
This leads to |UU" =1

. e . =) O (J0R - W=
Further, there is also an explicit integrate over space: [d’x
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Time reversal is anti-unitary: UU" =—1 (by construction ... that's QM for you!)

For Lorentz boosts, it is not sufficient to say y'(x',t') = y(x,t), since the boost is not an isommetry — it

does not preserve the volume d’x and hence the normalisation needs to be modified to preserve
probability. (Corresponds to a rotation in imaginary Minkowski space (x,it), but not a rotation in (x,t).)

If v —» y'=Ly and d°x — d’°x'= yd’x, then the normalisation condition is:
Jy Ty d® = [y"yd®x =1= [y"U'Lyyd®x =1= L'Ly =1
So L is not unitary.

(The generator ~ —tp, + xH c.f. ang mom, but adding a scale factor for the normalisation introduces
an imaginary and therefore non-Hermitian term to the generator.)
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Conservation Laws in Classical Mechanics [coldstein]

We have seen in Quantum Mechanics that Symmetries lead to Conservation Laws.

Some of the mathematical motivation for QM lies in the formulation of Classical Mechanics, which
we will touch on briefly here.

However, these formulations seem slightly perverse and at best are a manifestation of the “Real
World” which is of course the Quantum World. In the limit of large numbers of particles, the Real
World approximates to the description of CM.

Therefore, it is not worth pursuing this too far.

Construct Lagrangian: L(t,q,9)=T-V, where T is the Kinetic Energy and V is the Potential
Energy and g is a Generalised Coordinate.

By minimising the Action: A = j L(t,g,g)dt, one can derive the Euler-Lagrange equation of motion:

The Canonical Momentum is defined p = g—l‘

If the Kinetic Energy can be written as T =1ug® and V does not depend on ¢, then p = ug — this looks

like massxvelocity ... although there is no reason for g to be a spatial coordinate, and hence q does
not need to be velocity.
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Connections with Quantum Mechanics [Goldstein]

Taking this further, it is possible to formulate the time variation of a quantity Q(t,q,p):

. [Q,H] +aa—? where the Poisson Bracket is defined by [Q,H] = dQoH _0QdH

dt 9q dp p dq
Soif H=1p?/n
q:a—H:p/u and p:—a—H:O
Jp le

Then if Q does not depend on g and t, but only p, % =0 and Q is a constant in time.

As was done with QM, it is possible to identify generators of transformations and from the invariance
of a Hamiltonian, deduce the presence of conserved quantities, such as momentum and angular
momentum.

Further, it is possible to identify analogies between the Poisson Bracket formulation and the
Commutators of QM, as well as their corresponding Lie Algebras.

(Lie Algebra will be discussed in the following lecture.)
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Parity

The Parity transformation is spatial reflection (in all 3 dimensions): x — x'=—x
Y(x) = ¥ (x") =y(x) =Py(x") so y'=Py

For any isometry d°x — d°x'=d’x (there is an implicit modulus) — since by definition an isometry
does not alter the shape of an object.

From the normalisation:
W y'dx' = [y"P"Pyd’x = 1= P"P =1

So we see the transformation is associated with a unitary transformation.

Further, since y'(x') = y(x) = Py(x"') and x = —x', Py(x"') = y(—x"') or replacing the dummy variable x’
(

with x:  Py(x) = y(—x).
= P*y(x) = PPy(x) =Py(-x) =y(x) = P* =l so P'=P=P"

hence P is not only unitary but also Hermitian and hence corresponds to an observable.
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If P has eigenstates {| A >} with eigenvalues {A}, then
PIA>=A|A> and P?|A>=N|A>=A>

Hence > =1= A = +1

So if Parity is a symmetry of the Hamiltonian, there exist states of well-defined Parity (+1) which will
be conserved.

Type of object Transformation under Parity — examples

Vector (or Polar vector) Spatial coordinate X = =X
Momentum p=-AaV - —p

Axial vector (or Pseudovector) Ang momentum L=xxp—+L

also spin and tot ang mom

Scalar Scalar product XX —+X-X

Pseudoscalar Helicity g=SP . g

Pl

Note: Symmetries of the Hamiltonian must be verified experimentally.
They may be postulated because they seem “sensible” and elegant, but this does not guarantee that
they exist.

For example, Parity is not a symmetry of the Weak Interaction.
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