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LECTURE 1 – SYMMETRIES & CONSERVATION 
 

Contents 
• Symmetries & Transformations 

• Transformations in Quantum Mechanics 

• Generators  

• Symmetry in Quantum Mechanics 

• Conservations Laws in Classical Mechanics 

• Parity 

Messages 
• Symmetries give rise to conserved quantities.  
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Symmetry & Transformations 
 
Systems contain Symmetry if they are unchanged by a Transformation. 
 
This symmetry is often due to an absence of an absolute reference and corresponds to the concept 
of indistinguishability. 
 
It will turn out that symmetries are often associated with conserved quantities. 
 
Transformations may be: 
 
 
Active: 

• Move object  

• More physical 
 
 
 
 
 
Passive: 

• Change “description” 
Eg. Change Coordinate Frame 

• More mathematical 
 

Active 

Passive 
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We will consider two classes of Transformation: 
 
Space-time: 

• Translations in (x,t)    } Poincaré Transformations 

• Rotations and Lorentz Boosts  } 

• Parity in (x,t) (Reflections) 
 
Internal: associated with quantum numbers 
 
Translations: 

x
x'xx ∆−=→  

t
t'tt ∆−=→  

 
Rotations (e.g. about z-axis): 

zz
sinycosx'xx θ+θ=→  & 

zz
cosysinx'yy θ+θ−=→  

 
Lorentz (e.g. along x-axis): 

)tx('xx β−γ=→  & )xt('tt β−γ=→  

 
Parity: 

x'xx −=→  
t'tt −=→  

 
For physical laws to be useful, they should exhibit a certain generality, especially under symmetry 
transformations. 
In particular, we should expect invariance of the laws to change of the status of the observer – all 
observers should have the same laws, even if the evaluation of measurables is different. Put 
differently, the laws of physics applied by different observers should lead to the same observations. 
It is this principle which led to the formulation of Special Relativity. 
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Illustration from Non-Relativistic Mechanics 
 

 
 

 
 
For Observer 1: 
 
Mass m at position x, attached to Spring. 
Spring fixed to Wall at x = W. 
Natural length of Spring is L, and spring constant k. 
 
Boundary conditions: x = W+L+A & 0x =&  at t = 0. 
 
 
 
Observers 1 & 2 are in inertial frames. 
Observer 3 is in an accelerating frame wrt 1 & 2. 
 

x 

x=W 

Observer 1 

� 
 

� 

Observer 3 

m 

� 
Observer 2 
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Observer 1 measures things in a coordinate frame {x}, in which the Wall is stationary. 
 
Newton: xmF &&=  
 

xm))LW(x(k &&=+−−  

 

Implicitly replace )LW(x +−  by ξ,the extension of the Spring, and solve in terms of )tsin(ω  and 

)tcos(ω . 

Solution:  )tcos(ALWx ω++= , where m/k2 =ω  

 
 
Observer 2 measures in a coordinate frame {x’}, in which Observer 1 is moving with a uniform 
velocity:   vtx'x +∆+= . 

As far as Observer 2 is concerned,  
 

'xm))L'W('x(k &&=+−−  

 
The expression of for the Force (and mass and spring constant) is unchanged. 
 

Again, implicitly replace )L'W('x +−  by ξ – this works because the derivative of vtW'W +∆+=  

vanishes, allowing us to replace 'x&&  with ζ&& . 

Solution:  )tcos(AL'W'x ω++= , where m/k2 =ω  

 
The frames of the two observers are equally good, there is no way of absolutely distinguishing the 
frames – this indistinguishability corresponds to a symmetry (or equality) between the two frames – 
associated with the transformation between the two. 
The physical predictions of the two observers are identical: the amplitude and frequency are the 
same, although the description of the position of the mass is different. 
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However, Observer 3 is accelerating: 2

2
1 atx''x += , the equation of motion assumed by Observer 3, is  

''xm))L''W(''x(k &&=+−−  

 

This time, one cannot implicitly replace )L''W(''x +−  by ξ – because the derivative of 2

2
1 atW''W +=  

does not vanish. 
The solution is a little more complicated: 

Solution:  )tcos()k/maA(k/maL''W''x ω++−+= , where m/k2 =ω  

 
This is a different solution – the amplitude is different. 
 
The reason is that the force was incorrectly attributed as ))L''W(''x(k +−−  – as far as Observer 3 is 

now concerned, there is an additional force ma required to accelerate the Mass (and the Wall) – like a 
gravitational force. 
 
The best way to solve for the motion of the Mass, is to solve in frame {x} and then transform. 
 
Why the lack of symmetry between the Observers ? 
We know that Observer 3 (not 1 & 2) is accelerating because he is forced into the back of his car seat. 
Newton’s Law is only applicable for observers in inertial frames. 
 
 
One must be careful to understand the validity of given equation under a transformation. 
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Transformations in Quantum Mechanics 
 

Consider a scalar wavefunction:   ψ(x) 
 
Make a transformation from one coordinate system to another:   'xx →  
 
Define the transformed wavefunction in the new frame by:   )x()'x(' ψ≡ψ  

The intention is that x and 'x  correspond to the same point in space-time and the wavefunctions 'ψ  

and ψ describe the same event. 
 

 
 
At the point where the event happens, the wavefunction has some (relatively) well-defined value. 

x=0 

x 

x=1 x=2 x=3 

ψ 

�
ψ′ 

x 

x′ 

x′=10 x′=110 x′=210 x′=310 

x 

x′ 

ψ′     ψ 
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Note 'ψ  will be a different function from ψ: 

 

If )x(f'x = , and the inverse transformation is 1f − , then )'x(fx 1−= . Hence 

))'x(f()x()'x(' 1−ψ=ψ≡ψ    so   ())f(()' 1−ψ=ψ  

 
For example, if x)x( =ψ  and )xexp('x = , then )'xlog(x)x()'x(' ==ψ≡ψ . 

 
In general, assume that the new wavefunction can be derived from the old one by a transformation of 
the wavefunction itself: ψ=ψ U'    where U is an operator 

 

In general, ψ can be expressed as a linear superposition of base states {φi}:   ii
c φ=ψ ∑  

 
In the new description, 'ψ→ψ , 'φ→φ , so 

ii
''c' φ=ψ ∑ . 

But since ψ  and 'ψ  correspond to the same states, as do φ  and 'φ , then we would expect 
ii

c'c =  

 
)(Uc)c(U'c'

iiiiii
φ=φ⇒φ=ψ⇒ ∑∑∑  

 
This is the definition of a linear operator. 
 
 
Note there are two distinct transformations:  

a. the transformation describing the change in “description” (coordinate frame): )x(f'xx ≡→  

b. the associated transformation of the wavefunction: ψ=ψ→ψ U'  
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Furthermore, the overlap between any states ψa and ψb is an observable and should be independent 
of the description. 
 
Using the bra-ket notation for compactness: >↔ψ a|a ,   then  

>>=↔ψ=ψ a|U'a|U' aa  and HHH

a

H

a U|a|'aU' =<<↔ψ=ψ  

where H  denotes the Hermitian conjugate (often shown by a dagger). 
 

The overlap is   >>=<< a|UU|b'a|'b H    and if this is equal to >< a|b  for all ψa and ψb, then IUUH = . 

The transformation of the wavefunctions is Unitary. (But see later.) 
 
How do operators transform ? 

Consider the observable 
a

H

b
Aa|A|b ψψ>≡< ∫ . 

Want >>=<< a|A|b'a|'A|'b  for all ψa and ψb. 
HHH UAU'AAU'AUa|A|ba|U'AU|b =⇒=>⇒>=<⇒<  

 
If A is invariant, then  

0]U,A[AUUAAUAUA'A H =⇒=⇒=⇒=  
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Lastly, if states { >i| } form an orthonormal basis: 

• 
iji|j δ=><  

• All states >a|  in the vector space can be written as a linear superposition ∑ >α=> i|a| i  

 
Then the transformed states >=> i|U'i|  also form an orthonormal basis: 

 

ij

H i|I|ji|UU|j'i|'j δ=><=><=><  

and since >'i|  is derived from >i|  etc, then if i=j, the states >'i|  and >'j|  must be equal. 

 

∑ >><=>>= j|i|U|ji|U'i|  

Since >< i|U|j  is just (the set of coefficients of) a unitary matrix, the matrix can be inverted: 

∑ >><=> 'j|i|U|ji| H  

Hence any state >a|  can be written as: 

∑ >β=∑ >><∑α=∑ >α=> 'j|'j|i|U|ji|a| i

H

ii  

which is the requirement for a basis. 
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Generators 
 
Under a transformation, ψ=ψ→ψ U' . 

Assume that the unitary operator can be expressed as:   )iaXexp(U = , where a∈ℜ. 

 
What is X ? Naively it is the “log” of U, but this is non-trivial, since we are dealing with operators and 
functions need to be defined by their power series. 
 
X is defined as the Generator of the transformation. 
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Exponentiation of Operators 
 
Define: 

∑=++++≡ ∞
=0p

p

!p

13

!3

12

!2

1 A...AAA1)Aexp(    where IA0 =  

 
Then 

)Aexp()A()A()Aexp( H

0p

pH

!p
1H

0p

p

!p
1H =∑=∑= ∞

=
∞

=  

 

If )iaXexp(U = , then it is easy to show )iaXexp(U 1 −=−  – it follows from the normal rules for multiplying 

exponentials of scalars, which in turn can be proved by expanding the exponentials. The result follows 
easily because all the terms commute. 
 

If the U is unitary, then H1 UU =− , hence 

)iaXexp())iaXexp(())iaX(exp()iaXexp( HHH −===−  

 

Equating terms order by order in a implies XXH = , i.e. X is Hermitian. 
 
These results can be derived by 

• Looking at the series expansions of exponentials and considering Binomial expressions 

• Considering infinitisimal terms: ε+≈ε 1)exp(  for small ε 

• Building finite transformations from a product of infinitisimal ones: N

N
A

N
Lim )1()Aexp( += ∞→  

 
 
So the generator of a Unitary transformation is a Hermitian operator. 
In QM, Hermitian operators are postulated to correspond to observables. 
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Generator for Translations 
 
Consider a translation in 1D in the x-direction   

xx
'xxx'xx ∆+=⇒∆−=→  

So   )'x()x()'x('
x

∆+ψ=ψ=ψ  

 
By Taylor expansion (and changing the dummy variable x’ back to x for neatness): 
 

ψ
∂

∂
∆=+ψ

∂

∂
∆+ψ

∂

∂
∆+ψ

∂

∂
∆+ψ=∆+ψ=ψ )

x
exp(...

xxx
)x()x()x('

x3

3
3

x!3
1

2

2
2

x!2
1

xx
 

 

So we identify   )
x

exp(U
x

∂

∂
∆=  

 

Since in QM, 
x

ip
x

∂

∂
−= h  

)/piexp(U
xx

h∆=⇒  … we often choose units so that 1=h , and so it can be dropped. 

 
So we see that the generator of a translation is the momentum operator. 
 
This can be generalised to 3D:   ∆+=⇒∆−=→ 'xxx'xx  – where the quantities are 3-vectors. 
 
Then 

ψ∇⋅∆=+ψ∇⋅∆+ψ∇⋅∆+ψ∇⋅∆+ψ=∆+ψ=ψ )exp(...)()()x()x()x(' 3

!3
12

!2
1  

where ∇  is the grad vector derivative. 
 
Since in QM, ∇−= hip    )/piexp(U h⋅∆=⇒  
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Generator for Rotations 
 
Consider a rotation about the z-axis   

zz
sinycosx'xx θ+θ=→  & 

zz
cosysinx'yy θ+θ−=→  

It proves to be much easier to consider infinitisimal rotations:   
z

yx'xx θ+=→  & yx'yy
z

+θ−=→  

 
So   )'x'y,'y'x()y,x()'y,'x('

zz
θ+θ−ψ=ψ=ψ    and by Taylor expansion to first order: 

ψ
∂

∂
−

∂

∂
θ=ψ

∂

∂
θ+ψ

∂

∂
θ−ψ=θ+θ−ψ=ψ ))

x
y

y
x(exp(

y
x

x
y)y,x()xy,yx()y,x('

zzzzz
 

 

In QM, )
x

y
y

x(i)ypxp()px(L
xyzz

∂

∂
−

∂

∂
−=−=×= h  

So we see that the generator of a rotation is the angular momentum operator. 
 
Note: one should be careful about generalising this to 3D, since a rotation cannot be built up trivially of 
three rotations about the three axes. The combination of three such rotations depends on the order. 
This will be manifested in QM if three operators are combined: 

)/)LLL(iexp()/Liexp()/Liexp()/Liexp(
zzyyxxzzyyxx

hhhh θ+θ+θ≠θθθ  

The reason is that )BAexp()Bexp()Aexp( +=  only if A and B commute – which us not the case for 

the angular momentum operators. 
By contrast, the above is true for the momentum operators when generating 3D translations. 
 
 
Finally, extending what was done for spatial translations, we find the generator of a time translation 

is the Hamiltonian operator h/H
t

i −=
∂

∂
−  
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Symmetry in Quantum Mechanics 
 
Equation of motion: 

ψ=ψ
∂

∂
H

t
ih    where   )t,x(ψ=ψ  and )x(HH =  

 
Under a transformation: 

ψ=ψ→ψ U'    and   HUHU'HH =→  

 
So in the new description:  

''H'
t

i ψ=ψ
∂

∂
h  

 
By definition, the system is said to have a Symmetry if    H'H =  
Note: this is a symmetry of the Hamiltonian, not of the vector space (Hilbert Space) of solutions {ψ }. 

Of course, the symmetry contained within H will be reflected in the individual solutions. 
H defines the dynamics of the system, i.e. the interactions, the ψ ’s provide the way of describing the 

position of the particles. 
 
Eg. For classical description of gravitational forces around a star, the force/potential will exhibit 
spherical symmetry; however the orbit of a planet will not: not necessarily circular orbit and certainly 
confined to a plane. 
 
 
 

Symmetry:   H'H =    0]U,H[HUUHHUHUH =⇒=⇒=⇒  
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Symmetries & Conservation Laws 
 
If a Unitary Transformation U is generated by X:   )iaXexp(U =  

 
Then if H has a symmetry associated with the transformation U: 
 

0])iaX(,H[0)]iaXexp(,H[0]U,H[ p

!p
1 =∑⇒=⇒=  

 
For this to be true for all orders of a:   0]X,H[ =⇒ . 

 
Now consider the time variation of observables formed from X:   >< a|X|b  

 

>−=>∂
∂ a|Ha| i
t h

   and   H|b}b{||b iH

tt
<+=>=<

∂
∂

∂
∂

h
 

 
><+><=><+><−><=>< ∂

∂
∂
∂ a|]X,H[|ba|X|ba|XH|ba|HX|ba|X|ba|X|b i

t
ii

tdt
d

hhh
 

 
So if X has no explicit time-dependence and 0]X,H[ = , then >< a|X|b  is constant in time. 

  
Summary: If the Hamiltonian of a system is invariant under a Unitary transformation U generated 
by an (Hermitian) operator X, then there will conserved observables associated with X. 
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Symmetry 
 

Conserved Observable 

Translation in Space-time (x,t) 
 

Momentum-energy (p,E) 

Rotation in Space 
 

Orbital Angular-momentum L=x×p 

Reflections in Space 
 

Parity 

Gauge Transformation 
 

Charge 

 
Note: there are symmetries associated with 

• Reflections in time – Time reversal  

• “Rotations” in Space-time – Lorentz boosts 
which do not correspond to unitary transformations and hence do not have conserved observables. 
 
Hang on. Didn’t we show earlier that transformations, U, had to be unitary ? 
Actually it is the modulus of the amplitude squared which is physical and should be unchanged. 

This leads to IUUH =||  

Further, there is also an explicit integrate over space: xd3∫  
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Time reversal is anti-unitary:   IUUH −=    (by construction … that’s QM for you!) 

 
For Lorentz boosts, it is not sufficient to say )t,x()'t,'x(' ψ=ψ , since the boost is not an isommetry – it 

does not preserve the volume xd3  and hence the normalisation needs to be modified to preserve 
probability. (Corresponds to a rotation in imaginary Minkowski space (x,it), but not a rotation in (x,t).) 
 

If ψ=ψ→ψ L'  and xd'xdxd 333 γ=→ , then the normalisation condition is: 

1LL1xdLL1xd'xd'' H3HH3H3H =γ⇒=∫ ψγψ⇒=∫ ψψ=∫ ψψ  

So L is not unitary. 
 
(The generator ~ xHtp

x
+−  c.f. ang mom, but adding a scale factor for the normalisation introduces 

an imaginary and therefore non-Hermitian term to the generator.) 



Symmetries & Conservation Laws                                                                                                                                                           Lecture 1, page19 
 

 

Conservation Laws in Classical Mechanics [Goldstein] 
 
We have seen in Quantum Mechanics that Symmetries lead to Conservation Laws. 
 
Some of the mathematical motivation for QM lies in the formulation of Classical Mechanics, which 
we will touch on briefly here. 
However, these formulations seem slightly perverse and at best are a manifestation of the “Real 
World” which is of course the Quantum World. In the limit of large numbers of particles, the Real 
World approximates to the description of CM. 
 
Therefore, it is not worth pursuing this too far. 
 
Construct Lagrangian:   VT)q,q,t(L −=& , where T is the Kinetic Energy and V is the Potential 

Energy and q is a Generalised Coordinate. 
 

By minimising the Action:   dt)q,q,t(LA &∫= , one can derive the Euler-Lagrange equation of motion: 

0
q

L

dt

d

q

L
=

∂

∂
−

∂

∂

&
 

 

The Canonical Momentum is defined   
q

L
p

&∂

∂
= . 

If the Kinetic Energy can be written as 2

2
1 qT &µ=  and V does not depend on q& , then qp &µ=  – this looks 

like mass×velocity … although there is no reason for q to be a spatial coordinate, and hence q&  does 

not need to be velocity. 
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If V and hence L does not depend on q (KE does not usually depend on q), then 0
q

L
=

∂

∂
, and hence 

the E-L equation becomes 0p
dt

d
= , which implies p is constant. 

This situation corresponds to a uniform potential, i.e. not having derivatives with respect to q. Since 
we would tend to identify forces with the (spatial) derivatives of the potential, this corresponds to 
systems where in the absence of external forces, the momentum is conserved. 
 
 
The Hamiltonian is constructed:   Lqp)p,q,t(H −= &  

 
The Hamiltonian equations of Motion are: 

q
p

H
&=

∂

∂
,   p

q

H
&−=

∂

∂
   and   

t

L

t

H

∂

∂
−=

∂

∂
 

 
For many systems, this leads to a Hamiltonian which is equal to VT + , which we identify with the total 
energy of the system. 
 

If V and hence L does not depend on time (KE does not usually depend on t), 0
t

H
=

∂

∂
, and hence H is 

constant. We would tend to think of this as a situation where forces/potentials were not time 
dependent and hence the total energy of the system is conserved. 
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Connections with Quantum Mechanics [Goldstein] 
 
Taking this further, it is possible to formulate the time variation of a quantity )p,q,t(Q : 

t

Q
]H,Q[

dt

dQ

∂

∂
+=    where the Poisson Bracket is defined by 

q

H

p

Q

p

H

q

Q
]H,Q[

∂

∂

∂

∂
−

∂

∂

∂

∂
≡  

 

So if µ= /pH 2

2
1  

µ=
∂

∂
= /p

p

H
q&    and   0

q

H
p =

∂

∂
−=&  

 

Then if Q does not depend on q and t, but only p, 0
dt

dQ
=  and Q is a constant in time. 

 
As was done with QM, it is possible to identify generators of transformations and from the invariance 
of a Hamiltonian, deduce the presence of conserved quantities, such as momentum and angular 
momentum. 
Further, it is possible to identify analogies between the Poisson Bracket formulation and the 
Commutators of QM, as well as their corresponding Lie Algebras.  
(Lie Algebra will be discussed in the following lecture.) 
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Parity 
 
The Parity transformation is spatial reflection (in all 3 dimensions):   x'xx −=→  
 

)'x(P)x()'x(')x( ψ=ψ=ψ→ψ    so   ψ=ψ P'  

 

For any isometry   xd'xdxd 333 =→    (there is an implicit modulus) – since by definition an isometry 
does not alter the shape of an object. 
 
From the normalisation: 

1PP1xdPP'xd'' H3HH3H =⇒=∫ ψψ=∫ ψψ  

 
So we see the transformation is associated with a unitary transformation. 
 
 
Further, since )'x(P)x()'x(' ψ=ψ=ψ  and 'xx −= , )'x()'x(P −ψ=ψ  or replacing the dummy variable x’ 

with x:   )x()x(P −ψ=ψ . 

 

IP)x()x(P)x(PP)x(P 22 =⇒ψ=−ψ=ψ=ψ⇒    so   H1 PPP ==−  

 
hence P is not only unitary but also Hermitian and hence corresponds to an observable. 
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If P has eigenstates { >λ| } with eigenvalues {λ}, then 

 

>λλ>=λ ||P    and   >λ>=λλ>=λ |||P 22  

 

Hence 112 ±=λ⇒=λ  
 
So if Parity is a symmetry of the Hamiltonian, there exist states of well-defined Parity ( 1± ) which will 
be conserved. 
 
 
Type of object 
 

    Transformation under Parity – examples 

Vector (or Polar vector) Spatial coordinate 
Momentum 
 

xx −→  
pip −→∇−= h  

Axial vector (or Pseudovector) Ang momentum 
also spin and tot ang mom 
 

LpxL +→×≡  

Scalar Scalar product 
 
 

xxxx ⋅+→⋅  

Pseudoscalar Helicity 
Η−→

⋅
≡Η

|p|

ps
 

 
 
Note: Symmetries of the Hamiltonian must be verified experimentally.  
They may be postulated because they seem “sensible” and elegant, but this does not guarantee that 
they exist. 
For example, Parity is not a symmetry of the Weak Interaction. 
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An Example 
 
Consider the Hamiltonian corresponding to 

a) Particle in a vacuum    2

m2
1 pH =  

b) Particle subjected to a central force  )r(VpH 2

m2

1 +=  

What happens under 
i) Translations ? 
ii) Rotations (about the origin, on which the central force is centred) ? 

 
The invariance of the Hamiltonian under transformations  

↔ commutation with the corresponding generator  

↔ conservation of the corresponding physical observable. 
 
Firstly Classical Mechanics: 
 
Translation:      ∆+→ xx , pxmp →= &  

so p2 is unchanged, but xxr ⋅=  is changed 
 
Rotation:       Rxx → , Rpp →  

so ppIppRpRpppp TTTTT2 ==→=  is unchanged, as is r 

 
So under Translations: 

a) p is conserved 
b) p is not conserved – particles do not travel in straight lines 

and under Rotations: 
a) L is conserved 
b) L is conserved 



Symmetries & Conservation Laws                                                                                                                                                           Lecture 1, page25 
 

 
Next Quantum Mechanics: 
 
Does the Hamiltonian commute with the generators of the transformations, namely  

i) Momentum 
ii) Ang Momentum? 

 
Momentum: 
a) p clearly commutes with p2 

b) What is [V(r),p] ? 
))r(V()r(V)r(V]),r(V[~]p),r(V[ −∇=∇−∇=∇  

In spherical coordinates, rr̂~ ∂
∂∇ , so 0r̂~]p),r(V[

r

V ≠
∂
∂  

 
Ang momentum: 

a) pp)x(p2p)x(p]px,p[~]L,p[ 222 ⋅×+×=×  – being a bit cavalier with the vectors and their indices, 

but it can all be followed through logically. 

0)x(2 =∇    and   0pppppp)x(~pp)x(p ababcibiaabcibaiabc =ε=δε=∂ε⋅×    so 0]L,p[ 2 =  

b) 0xr̂x))r(V(x]px),r(V[~]L),r(V[
r

V

r
x

r

V =×=×=∇×=×
∂
∂

∂
∂  

 
So the conclusions are the same as in the Classical case for which quantities are conserved. 


