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LECTURE 4 – SU(3) 
 

Contents 
• Gell-Mann Matrices 

• QCD 

• Quark Flavour SU(3) 

• Multiparticle States 
 

Messages 
• Group Theory provides a description of the exchange bosons (gluons) of QCD and allows the 

interactions between coloured quarks to be calculated. 

• We see how to create multiplets, labelled by their weights (quantum numbers), and calculate 
their multiplicities. 
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Gell-Mann Matrices [7.1] 
 
SU(3) corresponds to special unitary transformation on complex 3D vectors. 
 

The natural representation is that of 3×3 matrices acting on complex 3D vectors. 
 

There are 32−1 parameters, hence 8 generators: {X1, X2, … X8}. 
The generators are traceless and Hermitian. 
 

The generators are derived from the Gell-Mann matrices:   Xi = ½ λi 
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0
 is not part of SU(3) – it corresponds to a U(1). 

 

So U(3) = U(1) ⊗ SU(3). 
 

By design there is an obvious SU(2) subgroup provided λ1,2,3 ↔ σ1,2,3. 

While σ1,2 have a role in forming raising and lowering operators, so will the pairs λ1,2, λ4,5 and λ6,7. 
 
The matrices are chosen to satisfy   

abba
2)(Tr δ=λλ  

 
The structure constants defined by   ∑=

c
cabcba

Xfi]X,X[    are non-trivial. 
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QCD [16] 
 
We choose base vectors: 

Red:   r  or |r> = (1,0,0) 

Blue:  b or |b>. = (0,1,0) 

Green:  g or |g>. = (0,0,1) 
 
By design the SM has an exact SU(3)colour local symmetry, with a corresponding gauge invariance and 
the associated 8 gauge bosons – gluons. 
 
The gauge-invariant kinetic term which can be included in the Lagrangian for the gauge fields is 

µνµν
FF~L

gauge
   where 

µν
F  is derived from the commutator of the covariant derivatives µµµ −∂= aaGiXD : 

acb

abc

aa X)GGfGG(~]D,D[~F νµµ
ν

ν
µνµµν

+∂−∂  

 
(For U(1)EM, 

µν
F  is the field tensor, corresponding to the E and B fields.) 

 
For a non-Abelian theory like SU(3)colour, the structure constants are non-vanishing and there are 
terms in 

gauge
L  which correspond to triple and quartic gauge couplings, i.e. the gluons couple to 

themselves. 
 
Due to a conspiracy of the QCD couplings (arising from the SU(3) properties), the energy involved in 
separating two coloured charges is infinite. 
Therefore, free observable particles must be “colourless”, corresponding to SU(3) singlets. 
 
(The fact that red + blue + green light appears to make white light is purely a feature of the physiology 
of the human eye and the fact that the cones are sensitive to red, blue and green light.) 
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Colour of Hadron States [16.1] 
 
For the description of the baryon colour wavefunction, we would like to construct invariant states 
which are “colourless”. 
 
It is tempting to consider >>> g|b|r| , however this is not colourless: 

For example under the transformation U = exp(iαλ1) ≈ 1 + iαλ1  
>>>≠>>α+>>α+>→>>> g|b|r|g|)r|ib)(|b|ir(|g|b|r|  

 
We construct a (tensor) state from a linear combination: 

>>>∑=ψ k|j|i|cijk ijk
   where   i,j,k are taken from {r,b,g} 

 
Under a unitary transformation, U,   ψ=ψ→ψ U'  

>>>∑=ψ′ k|Uj|Ui|Ucijk ijk
 

expanding  
>∑=∑ >><>= p|Ui|U|pp|i|U p pip  

>>>∑ ∑=ψ′⇒ r|q|p|UUUc rkqjpiijk pqr ijk  

 
If we chose 

ijkijkc ε= , then  

ψ>=>>∑ ε>=>>∑ ε>=>>∑ ∑ ε=ψ′ r|q|p|r|q|p|)Udet(r|q|p|UUU pqr pqrpqr pqrrkqjpiijk pqr ijk
 

 
So the colour description of a baryon is: 

>>>−>>>−>>>−>>>+>>>+>>> r|b|g|g|r|b|b|g|r|r|g|b|b|r|g|g|b|r|  
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The conjugate state transforms:   HU' ψ=ψ→ψ , so HU|r|r|r =<′→<<  

 
For the meson colour wavefunction, it is tempting to consider something like |rr| >< , however, just as 

before, this is not colourless: 

For example under the transformation U = exp(iαλ1) ≈ 1 + iαλ1  

|rr||rb|i|br|i|rr||)bi|r)(b|ir(||rr| ><≠><α+><α−<>≈<α−<>α+>→><  

 
We construct a (tensor) state from a linear combination: 

|ji|cij ij ><∑=ψ    where   i,j are taken from {r,b,g} 

 
Under a unitary transformation, U,   ψ=ψ→ψ U'  

H

ij ij U|ji|Uc ><∑=ψ′  

expanding  

|qq|U|ji|U|pp|c H

ij pq ij ><><><∑ ∑=ψ′  

 
If we chose ijijc δ= , then  

|qq|U|ii|U|pp||qq|U|ji|U|pp| H

i pq

H

ij pq ij ><><<∑∑ >=><><><∑ ∑ δ=ψ′  

ψ=<∑ >=<δ∑ >=><<∑ >= |pp||qp||qq|UU|pp| ppqpq

H

pq  

 
 
So the colour description of a meson is: 

|gg||bb||rr| ><+><+><  
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Gluons 
 
Gluons are required to ensure the invariance of the Lagrangian   ψ/ψD~L    where   

ii2

1 Gi~D λ−∂ . 

This gives terms in the Lagrangian like  
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where b really corresponds to a creation operator for a blue state |b>. 
 
We interpret these labels as operators which can operate on the vacuum.  
Looking at the first term: 

 
In this example, we deduce br~G

1
 as far as the colour quantum numbers are concerned. 

So we have )rbbr(~G
2

1

1
+  

 
 

>< 0|bGr|0
1

 
>b|  

>r|  

>
1

G|  

Create b quark Annihilate r quark 

Create G1 gluon 
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We can identify 8 coloured gluons associated with SU(3)QCD: 
 

)rbbr(~G
2
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1
+   )rbbr(~G

2

i

2
−   )bbrr(~G

2

1

3
−  

)bggb(~G
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– the coefficients from the Langrangian are absorbed into the description of the gluon wave-functions. 
 

The singlet )ggbbrr(
3

1 ++ ,corresponding to a U(1), is not “observed”. 

 

In analogy with )iWW(W 212

1
m=± , the states can be combined to create “charged operators”: 

br)iGG(
212

1 =m    etc 

 
These represent the flow of colour “charge”, corresponding to the exchange of gluons from one quark 
to another. 
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Colour Factors 
 

 
The scattering amplitude for the above process ∝ g1g2. 
 

The coupling strengths at each vertex are found from the projection of the colour state |ci>|cf> on to 

the gluon state |G>. 
 
According to the rules of QFT, we include a –ve sign for antiquarks. 

c1 

c3 c4 

c2 

g2 g2 g1 

G 
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r 

r r 

r 

 
Similar quarks: qqqq → . E.g. rrrr →  

 
Exchange gluons: 
 

)bbrr(~G
2
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3
−  

)gg2bbrr(~G
6
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8
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Amplitude for rrrr → : 

2

1

2

1)rrrr(A ⋅=→  via G3   and   
6

1

6

1)rrrr(A ⋅=→  via G8. 

So  

3
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1)rrrr(A =⋅+⋅=→  

 
Likewise, if we consider bbbb →  and gggg → , we find: 

3

2

6

1

6
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2

1)bbbb(A =⋅+⋅=→ −−  

3

2

6
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6

2)gggg(A =⋅=→ −−  

 
They are all the same – there is invariance to the colour of the quark … would expect this if there is to 
be colour symmetry. 
 

3
2)qqqq(A =→  
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Different quarks: 'qq'qq → . E.g. rbrb →  

 
Exchange gluons: 
 

)bbrr(~G
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)gg2bbrr(~G
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br  
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1)rbrb(A −− =⋅+⋅=→  

111)brrb(A =⋅=→  

 
But do we add or subtract the amplitudes ? 
This depends on the symmetry of the quark system. 
 

1)'qq'qq(A 3
1 ±=→ −  
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r r  

r  

 
Quark & Antiquark: qqqq → . E.g. rrrr →  

 
Exchange gluons: 
 

)bbrr(~G
2

1

3
−  

)gg2bbrr(~G
6

1

8
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So  

3
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1

6

1
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2

1)rrrr(A −−− =⋅+⋅=→  

 

3
2)qqqq(A −=→  

 
Note: we have ignored the s-channel scattering:  
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r 

b b  

r  

 

Quark & Antiquark: 'q'qqq → . E.g. bbrr →  

 
Exchange gluons: 
 

br  
 
 
 
 
 

 
So 

111)bbrr(A −=−⋅=→  

 
1)'q'qqq(A −=→  

 
Again the s-channel scattering has been ignored. 
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r 

r b  

b  

 

Quark & Antiquark: 'qq'qq → . E.g. brbr →  

 
Exchange gluons: 
 

)bbrr(~G
2

1

3
−  

)gg2bbrr(~G
6

1

8
−+  

 
 
 
 

So 

3
1

6

1

6

1

2

1

2

1)( =⋅+⋅=→ −+brbrA  

 

3
1)''( =→ qqqqA  

 
Summary: 
 

3
2)qqqq(A =→   3

2)qqqq(A −=→   1)'q'qqq(A −=→  

 
1)'qq'qq(A 3

1 ±=→ −  
3
1)''( =→ qqqqA  
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Example using Colour Factors 
 
Consider interactions in a qq  (e.g. a meson): 

 

 
 

Meson:   >++>= ggbbrr|M|
3

1  

 
Amplitude is   >< ∑ M|G|M    where the sum is over all gluons. 

 
Using previous results: 

3

8

3

2 11rr|G|ggbbrr −− =−+−+>=++< ∑  

 

Need two lots of 
3

1  and also consider >bb|  and >gg|  (same as >rr|  by symmetry). 

 

So amplitude 3

8

3

82

3

1 )(3~ −− =××  

G 

M M 
q q 

q  q  
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Weights [7.2] 
 
The commuting generators in SU(3)(Cartan Subalgebra)  are: 
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This implies there are two simultaneously observable quantum numbers, along with I2. 
 
With an eye to hadrons, rather than QCD, we define  

Isospin  
32

1

3
I λ=  

Hypercharge 
83

1Y λ=  

 
The weights are readily identified from the diagonal matrices: 

0,,I 2

1

2

1

3

−+=    and   3
2

3
1

3
1 ,,Y −=  

 
Just as in SU(2), we defined raising and lowering operators which move between the different weight 
vectors (in SU(2), points on line), so we can define raising and lowering operators which move 
between the different weight vectors, which in SU(3), will be points in the plane. 
 

)i(I
212

1 λ±λ=
±

   )i(U
762

1 λ±λ=
±

   )i(V
542

1 λ±λ=
±

 

 
These are not all independent. 
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Quark Flavour SU(3) [11] 
 
The quarks (u, d, s) are all light (compared to hadron masses) and their interactions are dominated by 
the flavour-independent colour force. 
 
We choose base vectors: 

Up:   u  = (1,0,0) 
Down:  d  = (0,1,0) 
Strange:  s  = (0,0,1) 

 
The weights are: 
 

 I3 Y 
u +1/2 +1/3 
d −1/2 +1/3 
s 0 −2/3 

 

Just as I+ = 

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 raises s = (0,0,1) to d = (0,1,0)  
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The weight diagram looks like: 

 
We simplify this to the fundamental representation for the quarks (3) and the corresponding weight 

diagram for the antiquarks (3 ) (negated quantum numbers): 
 

                             
 

=3  

+1/2 
 

−1/2 
 

−2/3 
 

Y 

I3 

d u 

s 
 

+1/3 
 

I+ 

V+ U+ 

=3  
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To identify the states and multiplets for combining quarks and antiquarks, we “add” one diagram to the 
vertices of the previous one: 
 
E.g. combining 2 quarks: 
 

 

 

= ⊕ 

     6                      ⊕                       3  

= 

⊗ 

     3                   ⊗                 3 
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E.g. combining quark and antiquark: 
 
 

 

 

⊕ = = 

     8                           ⊕           1 

⊗ 

     3                ⊗                    3  
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These diagrams show the weights (quantum numbers), but how does one identify the multiplets 
associated with the symmetry ? 
 
General multiplet with 6-sides and 3-fold symmetry: 

 
 
Rules: 

• On outer ring, only 1 state. 

• On each subsequent inner ring, add an extra state at each node … 

• Until a triangle is obtained. 

• After this, all triangles have the same number of states. 

a=4 

b=2 
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The multiplet multiplicity is given by ½ (a+1)(b+1)(a+b+2). 
 
E.g. 

has a = b = 1, so multiplicity is ½ × 2 × 2 × 4 = 8 – correct 
 
Having said the above, the most complex multiplicity we ever get to worry about is for 3 quarks or 
antiquarks. 
So in SU(3)flavour, the largest multiplicity corresponds to the 10: 
 

a = 3, b = 0, so multiplicity is ½ × 4 × 1 × 5 = 10 – correct 
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Multiparticle States [12] 
 
Eigenstates describing the combination of individual identical particles tend to have a well-defined 
exchange symmetry.  
The symmetry operators will not change the exchange symmetry – the symmetry operators commute 
with the exchange operator: 

If U = exp(iαX12) where X12 = X1 + X2 and Xi operates on particle i, and P12 is the exchange operator 
such that particles 1 and 2 swap quantum numbers,  

P12 U = P12 exp(iα (X1 + X2)) = exp(iα (X2 + X1)) P12 = exp(iα (X1 + X2)) P12 = U P12 
 
This means that the symmetry operations will not modify the exchange symmetry of a state. 
Since the multiplets consist of those states related to each other by unitary transformations (in 
particular, the raising & lowering operators) from each other, they will all have the same symmetry. 
 
We demonstrated explicitly in the last lecture that the I=0 and I=1 states transformed within their 
multiplets. 
 
These multiplets are the irreducible representations. 
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Construction States – Young Tableaux 
 
 

We consider a 2-particle wavefunction: ψ12 – where the index 1 (2) describes the quantum numbers of 
particle #1 (#2). 
 
The exchange (or permutation) operator can be used to generate states of explicit symmetry: 

S12 = 1 + P12   symmetrising operator    

A12 = 1 − P12   antisymmetrising operator 
 

P12 P12 = 1, so   P12 S12 = P12 + 1 = S12   and   P12 A12 = P12 − 1 = −A12 
So 

P12 (S12ψ12) = + (S12ψ12)   and   P12 (A12ψ12) = − (A12ψ12) 
 
 
Starting from a particular multiparticle state, we can apply Sij and Aij repeatedly to build up states 
which under exchange are: 

• Symmetric with respect to all particles 

• Antisymmetric with respect to all particles 

• Mixed symmetry, which may be symmetric (antisymmetric) with respect to particular particles. 
 

Rather than “ψ” on to which we hang quantum number labels, we use: 
� to denote a particle – of which there are Np. 
i to denote the state of a particle – of which there are Nn. 
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Complete states for Np particles are denoted by an arrangement of Np �’s, each with its own quantum 
number label: 
 
E.g.    
 
 
 
 
 

The numbers are the single-particle quantum numbers (could be labelled a, b, c … or α, β, γ …) and 
must not exceed Nn. 
 
The states are symmetrised with respect to all the particles (�’s) in a given row and  
The states are antisymmetrised with respect to all the particles (�’s) in a given column. 
 
The rules for constructing the Tableaux are: 

1. A row must not be longer than the one above it. 
2. The numbers (quantum number labels) when viewed in reading order through the table must not 

decrease. 
3. Going down vertically in a given column, the numbers must increase. 

 
The rules ensure that don’t 

• double count (2nd rule) 

• antisymmetrise wrt same single particle state, causing a vanishing combination 
 

1 1 2 3 3 3 3 

4 5 6     

9       

10       
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Example for SU(3) 
 
Consider a two particle state: Np = 2 and we have two �’s. 
In SU(3), there are 3 labels, e.g. (u,d,s) – we will call them generically (1,2,3) – Nn = 3. 
 
We can construct 6 symmetric states: 
 

1 1 
 

1 2 
 

1 3 
 

2 2 
 

2 3 
 

3 3 
 

uu )duud(
2

1 +  )suus(
2

1 +  dd )sdds(
2

1 +  ss 

 
and 3 antisymmetric states: 
 

1 
2 

 

1 
3 

 

2 
3 

 

)duud(
2

1 −  )suus(
2

1 −  )sdds(
2

1 −  

 
 
We have already seen uu, )duud(

2

1 + , dd , )duud(
2

1 −  when considering the SU(2) subgroup. 

 
 
The shape of the Tableaux corresponds to the multiplets of the representations. 
Having motivated the Young Tableaux, we will drop the state labels. 
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Combining Multiplets 
 
All that is really needed are fairly simple combinations; hence, crudely speaking, it is sufficient to 
simply combine diagrams in a manner consistent with the Rules. (For more details, see [12.2].) 
 
Some examples: 
 

2 particles 
 

 ⊗ 
 

   =  
 

  ⊕ 

 

 
 

   

              

              

3 particles  
 

⊗ 
 

 ⊗ 
 

 = { 
 

  ⊕  
 
 

} ⊗ 
 

 

              

      =    
 

⊕   
  

 

⊕ 

 

  

  
⊕  

 
 
 

       Totally 
Symmetric 

 Mixed 
Symmetry 

 Mixed 
Symmetry 

 Totally 
Antisymmetric 
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Recall that a totally antisymmetric singlet could be generated by   εijk… qi qj qk … 
 
To the extent that this can be considered to be the “vacuum” state, then removing one quark gives 

rise to a description of the conjugate or antiparticle state:   εijk… qi qj … 
 

So in SU(n), the corresponding Young Tableaux can be represented by a column of Nn−1 �’s: 
 

 
 
 
 
 

 

Nn−1 �’s denoted n  

 

Note in SU(2), the conjugate is 2  = � … which is the same as the quark state 2 = �. 

We know this because we showed that the conjugate state 








−
=

u

d
2  transforms like 








≡

d

u
2 . 

 
Combining a quark and an antiquark under SU(n): 
 

 
 

⊗  
 
 
 
 
 

= 

 

 
 
 
 
 
 

⊕ 

 

  
  
  
  
  

 
where the first multiplet is a singlet in SU(n). 
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Calculating Multiplicities [13.3] 
 
The beauty of the Young Tableaux is that they help us identify multiplets, understand their symmetry 
and evaluate their multiplicities. 
 
The multiplicity is a ratio: 
For numerator in SU(n), insert numbers: 
 
n n+1 n+2 n+3 n+4 n+5 n+6 

n−1 n n+1     

n−2       

n−3       

and take the product. 
 
For denominator count the length of the hooks 

 
and take the product. 
 

Can include both numbers in a cell with a diagonal:  

10 7 6 4 3 2 1 

5 2 1     

2       

1       

n 
d 
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  numerator denominator multiplicity 
     

n  n 
 

n 1 n 

     

n  n 

n−1 

… 

2 
 

n(n−1) … 2 (n−1) … 1 n 

     

1 n 

n−1 

… 

1 
 

n! n! 1 

     
 n n+1 

n−1  
 

n(n+1)(n−1) 3⋅1⋅1 

3

)1n(n)1n( +−
 

   E.g. SU(2) → 2 
SU(3) → 8 
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3 Quarks: 
 

  
 

⊗ 
 

 ⊗ 
 

 =    
 

⊕   
  

 

⊕ 

 

  
  

⊕  
 
 
 

       Totally 
Symmetric 

 Mixed 
Symmetry 

 Mixed 
Symmetry 

 Totally 
Antisymmetric 

              

SU(2) 2 ⊗ 2 ⊗ 2 = 4 ⊕ 2 ⊕ 2 ⊕ 0 

SU(3) 3 ⊗ 3 ⊗ 3 = 10 ⊕ 8 ⊕ 8 ⊕ 1 

SU(6) 6 ⊗ 6 ⊗ 6 = 56 ⊕ 70 ⊕ 70 ⊕ 20 
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Quark and Antiquark: 
 

SU(2)  
 

⊗ 
 

   =   
 

⊕  
 
 

 2 ⊗ 2    = 3 ⊕ 1 

       Totally 
Symmetric 

 Totally 
Antisymmetric 

          
SU(3)  

 

⊗ 

 

 
 

  = 

 

  

  
⊕ 

 

 
 
 

 3 ⊗ 3     8 ⊕ 1 

       Mixed 
Symmetry 

 Totally 
Antisymmetric 
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The most general Tableaux for SU(2) has the form 

 
 
There cannot be a third row, since there are only two labels and in a given column, the labels cannot 
be the same. 
This state corresponds to Np = a + 2b particles. 
 
If we label the configuration with the labels for SU(2) of Quark Flavour (u,d), the first such state might 
be: 
 
u u u u u u u 

d d d     

 
Since the corresponding wavefunction must be antisymmetrised with respect to the labels in the 

columns, these will consist of pairs ~ (ud−du). These correspond to states I=0, I3=0. 
Therefore the Tableaux corresponds to a state with I = ½ a, I3 = ½ a. 
 
The next state to construct would be: 
 
u u u u u u d 

d d d     

 
Effectively, this can be obtained be obtained by applying a lowering operator. 
 

a 

b 
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The last state in the series will be: 
 
u u u d d d d 

d d d     

 
a total of (a+1) states corresponding to I = ½ a. 
 
 
The most general Tableaux for SU(3) has the form 

 
This has a multiplicity ½ (a+1)(b+1)(a+b+2). 
 

 
 
 
 
 

Homework 
 
Verify the multiplicities for the general SU(2) and SU(3) Tableaux using the numerator/denominator 
method. 

a 

b 

c 


